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Rivulet instabilities
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We examine a three-dimensional rivulet flowing down a vertical plane. There exists
a basic state with fully developed, unidirectional flow and straight contact lines. In
the absence of contact-angle hysteresis the slope of the contact angle versus
contact-line speed relationship measures the mobility of these contact lines. The
stability characteristics of flat rivulets subject to long wave disturbances are
examined using lubrication theory. We find that kinematic-wave instabilities are
predicted for wide rivulets or rivulets with rather immobile contact lines, while
capillary break-up is predicted for narrower rivulets with mobile contact lines. We
find for all cases that the expression for the growth rate depends weakly on slip
between the liquid and solid near the contact line, but strongly on the shape of the
rivulet and the mobility of the contact lines. We discuss in detail the mechanisms
by which the contact lines affect the instabilities.

1. Introduction

A rivulet is a stream of liquid flowing down a solid surface and sharing an interface
with a surrounding gas. A simple example of a rivulet is a stream of water seen
on the windshield of a car after a rainfall.

Rivulets occur in a wide variety of engineering applications. Drops rolling off a
surface used for condensation may coalesce, forming a rivulet. Rivulets arise in the
melting and casting of metals. In processes of heat exchange and gas absorption,
rivulets play a major role since they have a large surface area to cross-sectional area
ratio. This allows for enhanced heat transfer. In industrial coating processes using
liquid layers, the film may become unstable, breaking up into rivulets. In all of the
above areas, a knowledge of the fluid motion and stability characteristics of rivulet
flow is required to assess the efficiency of the process.

As shown in figure 1, a rivulet has two contact lines. The motions of these contact
lines can give rise to rivulets with many different geometrical configurations. The
simplest of these is the straight rivulet considered by Towell & Rothfeld (1966). This
is a rivulet with straight, parallel contact lines whose flow is steady, fully developed
and unidirectional. The interface forms a cylindrical meniscus. Such rivulets exhibit
a wide variety of instabilities. Kern (1969, 1971, 1975 unpublished) and Culkin (1981)
- see the break-up of straight rivulets into drops, rivulet meandering, formation of large
amplitude surface waves, and the transition of rivulet flow from laminar to turbulent
regimes. Our work will concentrate on the break-up and surface-wave instabilities.
These two features of rivulet flow tempt one to classify rivulets somewhere in between
capillary jets and film flows. It is not surprising that rivulets are susceptible to a
dropwise break-up since they possess a curved meniscus as discussed by Davis
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Figurk 1. Sketch of a rivulet flowing down a vertical wall: (a) side view; (b) top view;
(c) front view.

(1980). This curvature allows for a capillary instability (Rayleigh 1879) where surface
tension causes capillary pressure gradients which force fluid from thinner to thicker
regions. On the other hand, wide rivulets with flat interfaces clearly resemble films.
It is well known (Benjamin 1957; Yih 1963) that films are susceptible to kinematic-
wave instabilities. Thus, one also expects surface waves to develop on rivulets.

The goal of the present work is to investigate the break-up and kinematic-wave
instabilities for the purpose of further determining the effects of the presence of
contact lines and boundary conditions posed there. As previous studies of flows with
moving contact lines have shown [see Dussan V. & Davis 1974; Dussan V. 1976;
Greenspan 1978, for example], it is convenient to allow the fluid to slip along the
solid surface in the vicinity of the contact line; this suppresses the non-integrable
stress singularity that would otherwise appear. In addition one must pose boundary
conditions at the contact line in order that there be a mathematically well-posed
problem which leads to physically realistic results. The following three types are
most often posed:

(i) condition of contact,

(ii) condition of contact angle changing with contact-line speed, and,

(iii) condition of bounded velocity at the contact line.

The first of these defines where the interface contacts the solid surface. As discussed
by Young (1985), the last states that the contact line is a fluid boundary. The second
is usually posed as the form 8 = G(U;) where 6 is the angle measured from the solid
surface to the interface at the contact line, and Uy, is the speed of the contact line
measured relative to the speed of the surface. The function G is usually chosen to
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describe experimental observation. The most common forms of G (Davis 1980)
represent contact-angle hysteresis, fixed contact lines, fixed contact angle, and
smooth contact angle variation. The slope G"(0), when it exists, measures the mobility
of the contact line whereas the static contact angles measure the wetting
characteristics of the solid. '

There has been one previous theoretical analysis (Weiland & Davis 1981) of
dynamic rivulet instabilities. However, their formulation appears to be incomplete
in that they do not pose the boundedness condition. Thus they need to introduce ad
hoc procedures to determine unknown constants of integration.

We begin by formulating the problem for flow of a rivulet down a vertical plate.
We allow slip between the liquid and the solid at the eontact line by posing a slip
condition similar to that of Greenspan (1978). We assume a linear relationship without
hysteresis between the speed of the contact line and the contact angle. The slope G'(0)
of the advancing and receding portions of this relationship may take on values from
zero to infinity so that the contact-line motion can vary from fixed-contact-angle to
fixed-contact-line regimes. Thus we can determine the effects of the mobility of the
contact lines.

The system governing the above is then non-dimensionalized. The streamwise and
normal coordinates are scaled on the rivulet height while the cross-stream coordinate
is scaled on half the rivulet width. It is assumed that long-wave disturbances are
present so that a non-dimensional wavenumber k, and aspect ratio § result.

We discuss a linearized instability of the straight rivulet for £ and é small. In order
to do asymptotics in two small parameters, we assume that k and & are related
through an expression of the form 8 = O(k*). (1.1)

By varying ¢ from O to oo we can allow the rivulet to widen to the extreme case of
film flow. We perform the analysis for various values of s in relation (1.1) to determine
the effects of the width of the rivulet on the stability characteristics. We compare
our results with the experimental observations of Kern (1969, 1971, 1975 unpublished)
and Culkin (1981). Finally, we discuss the mechanisms by which the contact lines
affect the stability characteristics of rivulets. The importance of these mechanisms
is measured by a parameter G,, proportional to

@'(0)
&’

which is a ratio of the mobility of the contact lines to the square of the width of the
rivulet.

(1.2)

2. Formulation

Consider a rivulet flowing down a long, smooth, vertical plate as shown in figure 1.
The rivulet consists of a Newtonian fluid which has a constant density p and a
constant viscosity x. The surrounding fluid is a passive gas with a constant pressure,
which we take equal to zero. The entire system is isothermal.

The governing equations for the system are the Navier—Stokes equations and the

continuity equation: plug,+uyu, ) = oy 1+ pF, (2.1)
a,nd u"‘ = O, (2.2)
where u, is the velocity vector (u;) = (u, v, w), o, is the stress tensor,

oy =—poy+ pluy ;+u ), (2.3)
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and F, is the gravity force per unit mass, ,
(F) = (9, 0,0). (2.4)

The above equations refer to a right-handed Cartesian coordinate system whose
origin is on the plate, whose z-axis points down the plate and whose y-axis points
normal to the plate into the liquid, as shown in figure 1.

There are boundary conditions appropriate to the liquid—gas interface at
y = h(z, 2, t). These are the kinematic condition

v = h,+uh, +wh, (2.5)

and the stress balances oy n,n, = 2HT, (2.6)
oyt =0, 2.7

Oy nyly = 0. (2.8)

The first of these states that the interface is a bounding surface between the fluid
and the gas, while the stress balances give the normal-stress jump across an interface
with constant surface tension 7', and zero tangential shear stress, respectively. Here
n is the unit outward normal vector to the interface,

n=(—h, 1, —h)(1+h2+h2)H, (2.9)

t, and ¢, are orthogonal unit tangent vectors
t, = (0, h, 1) (1+A2)H, (2.10)
t,=nxt, (2.11)

and H is the mean curvature of the interface,
2H = [h,,(1+h2)—2h b, b +h,,(1+A2)] (1 +A2+A2)L (2.12)

There are boundary conditions appropriate to the solid-liquid interface. Dussan V.
& Davis (1974) have shown that the no slip condition %, = 0 on y = 0, together with
the movement of the contact line result in a multi-valued velocity field at the contact
line. This corresponds to a non-integrable stress singularity giving an unbounded
force at the contact line. This theoretically unreasonable result can be relieved by
allowing perfect slip on the fluid—solid interface near the contact line. We follow
Greenspan (1978) and pose a slip model:t

a a

u=zuy, v=20, w=7l—wy
The liquid is allowed to slip over the solid plate at a speed directly proportional to
the shear. We choose a to be a numerically small constant so that the magnitude a/A
of the slip, is significant only near the contact line where & = 0.

There are boundary conditions at the contact lines. Since the contact-line positions,
given by z = A(z,t) and z =—B(z,t) are themselves unknown, we must pose
conditions on the motion of these lines.

First, there are the conditions of contact,

ony=0. (2.13a, b, ¢)

h=0 atz= A4, (2.14a)
h=0 atz=-—B. (2.14b)

t One should really allow slip only normal to the contact line. The model (2.13) results in an
O(e) slip along the rivulet axis, which, though non-zero, is small. We choose form (2.13) for
convenience.
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Second the velocity field at the contact lines is assumed to be bounded. This
condition is implicit in the models of moving contact lines considered to date (e.g.
Greenspan 1978; Hocking 1983; Dussan V. & Chow 1983).

Third, the contact anglet depends on the contact-line speed. We define the contact
angle 6 such that its tangent is the slope of the interface at the contact line in the
direction v normal to the contact line. Thus,

tanf, = —Vh'v, =—h,(A2+1)} atz= A, (2.15a)
tanfp = —Vh-vg =h,(Bi+1)t atz=—B. (2.15b)

We consider contact lines that exhibit no contact-angle hysteresis. For simplicity
only we consider a piecewise linear model, namely

0 = G(UCL) = ¢+G’(0) UCL' (2.16)

Equation (2.16) possesses two special cases. (i) If G'(0)> oo, then Uc,—0 and the
contact line is stationary. Thus, for fixed contact lines, A and B are time-independent.
(ii) If G’(0) >0, then 8 >¢ for all time and the dynamic angle equals the static angle
always. This is the fized-contact-angle case. Generally, 0 < G’(0) < c© and we have
smooth contact-angle variation. We also note here an equivalent form for the kinematic
boundary condition (2.5) which follows from integrating the continuity equation
across the thickness of the rivulet

h o (* d o (*
,+aj.ou y+aj.owdy—0. (2.17)

This form will be convenient for the linear stability analysis to follow.

3. Scaling

We follow Weiland & Davis (1981) and scale all variables for the analysis of long
waves with wavelength A on shallow rivulets of width 2L. This analysis will then
apply to rivulets with small contact angles. If d is the maximum height of the rivulet,
then we have two small parameters, the wavenumber £,

2nd
k= " (3.1)
and the aspect ratio &, d
&= 1 (3.2)
We define the velocity scale Uy "
v, =%, (3.3a)
I
the pressure scales pg,
U,
ps=”ds, (3.3b)
and the timescale {, d
b, =—. (3.3¢)
8 Us

t The angle 6 would depend on speed if attachment or detachment kinetics of the liquid from
the solid has timescales comparable to those of the flow. Ngan & Dussan V. (1982) observe 6 ,pp,
which coincides with @ for small speeds, that show variations with speed. Hockmg (1983) conjectures
that (in the absence of kinetic effects) @ would be constant.
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The scaled quantities, denoted by upper-case letters, are as follows:

_2nx Yy 2 _2rUg
- T=h 2= 1T
_u v . Aw _ k_p
U_Us’ V_kUs’ W_21tLUS’ P_ps’ 34)
’ h ’ A ’r B
W= 7’ A = A B I J
The scaling gives rise to the following non-dimensional groups:
2,43
R=p@
u
d? 3.5
B, = (3.5)
Kk =o/d?

where R is the Reynolds number, « is the slip coefficient and B, is a Bond number
based on the height of the rivulet. In addition it is convenient to introduce the Bond
number B, based on the width of the rivulet

B; pglL?
By =%="F"
The scaled system can be obtained by direct substitution into (2.1), (2.2), (2.5-(2.8)
and (2.13)-(2.16).

(3.6)

4. Basic state

We consider a steady, unidirectional, fully developed flow down the plate in the
X-direction; see Towell & Rothfeld (1966), Allen & Biggin (1974). Under these
assumptions the rivulet flow satisfies

Uyy+682U,, =—1, (4.1a)
P, =P,=0, (4.15, ¢)

_ 2
—P=%dHZZ(l+82H22)‘§ onY=~H, (4.2)
Uy—8U,H,=0 onY=H, (4.3)

— K —
U=EUY on Y =0. (4.4)

Since the fluid wets the solid on a strip of constant width

-1<2Z«1, (4.5)
and since all flow quantities are X-independent, we have conditions at the contact
line: H=0 atZ=+1, (4.6)
0H, =Ftan¢ atZ=+1. 4.7)

Consistent with the definition of d, we pose the normalization condition

H=1 atZ=0. (4.8)
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From (4.1b, c) we conclude that the pressure is a constant and thus (4.2) tells us that
the interface forms a cylindrical meniscus whose cross-section is the arc of a circle.
We shall seek approximations to U(Y, Z) and H(Z) for the case of shallow, wide
rivulets, i.e. § € 1. Assuming that é2/B; = 1/B; = O(1) as § >0, Weiland & Davis
(1981) find that

U=[H,Y—-iY?+k]+#[1Y2+ Y(— H3+5Z°H,) + k(— Hy+ 42?1+ 0(8%), (4.9a)

H= H,+8Z*H: +0(8%), (4.9b)
P = B71(2—-26%)+0(8%), (4.9¢)
¢ = 8(2+36%)+0(8%), (4.9d)

where H,=1-22 (4.9¢)

The terms proportional to x in (4.9a) should really be discarded since they arise from
our allowance of slip along the rivulet. See the footnote on p. 4.

We note that § >0 is formally a singular perturbation of (4.1a). However, forms
(4.9) do satisfy all the boundary conditions and the expansions are uniformly valid
on the domain —1 < Z < 1. Thus, a uniformly valid approximation is obtained by
only using the ‘outer’ solution. This circumstance, a common occurrence when using
lubrication theory, has been clarified by Young & Davis (1985).

5. Linear theory: general
We disturb the basic state (4.9) as follows:
(U, V,W,P,h,A,B)=(U,0,0,P,H, 1, 1)+ (', v',w',p’, k', A", B"), (5.1)

substitute these into the scaled version of the governing system of §2 and linearize
in primed quantities. For each dependent variable y” we introduce normal modes as

follows: VX, Y, Z,T)= (Y, Z) el XD, (5.2)

where the complex wave speed c, ¢ = cq+icy, (5.3)

determines the stability characteristics of the basic state. The governing normal-mode
system is as follows:

kR[(TU—c)+ Upv+ Uyw] = —ip—kPu+uyy +06%uzy, (5.4a)
IBR(U—c)v = —py+ k¥ — kv +vyy+ 02,5}, (5.4b)
iIBR(U—c)w =—8Dpy+ k¥ — kPw+wyy + 02w, 5}, (5.4¢)
iutvy+w, =0, (5.4d)
subject to boundary conditions on the interface

v=iU—-c)h+wH, onY=H, (5.4e)

—p+2k* vy + 82w, Hy — H,[6%, + wy [} N2
= k{_B_’:th_l"'BLL[N_ahz]z} on Y=H, (54f)

280 HY [vy —wz]—i0h[Uy Hy+ U, 1+ (1 —82H%) [%v,+wy ] =0 on Y =H, (5.49)
Uy +ik?v— Hy [8%u, +ik*w]— 82U, by + H[Uyy—8?H, U, 1=0 on Y =H, (5.4h)
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and conditions on the solid

u= %[uy—% 17,,] on Y =0, (5.41)

v=20 on Y =0, (5.4)
K

w= ﬁwy on Y =0, (5.4k)

and conditions at the contact lines:

(1) Contact condition
h+H,A=0, Z=1,

h—H,B=0, Z=—1, (5.41)

(2) Contact-angle-varies-with-speed condition

4t H,, ]_ . h _
T.G0) [hz H, h|=—ikN% i, Z=%1, (6.4m)
where .
N = (1+8H%). (5.4m)

(3) Bounded-velocity condition.

The scaled system (5.4) contains the two small parameters k and 4. In order to use
an asymptotic method for analysis of this system we determine the order of § with
respect to k. First of all, note that if § = 0, then the dimensional width L = oo, say,
so that we have a rivulet which is infinitely wide in the cross-stream direction, i.e.
a film flow. There are no contact lines, the edge conditions there are lost. Since we
scale the dimensional cross-stream coordinate z on L, the:limit § >0 in system (5.4)
is a singular perturbation. Thus, we restrict taking this limit in any results we obtain.
In contrast to Weiland & Davis (1981) we shall pose the class of problems such that

82 = Dki?, (5.5a)
where D is a constant,

D =0(1), (5.5b)

and s > 0. We take s % 0, so that we can simplify the system to ordinary differential
equations for the velocity components.

After choosing the value of s we then consider the effects of surface tension. From
the normal stress boundary condition (5.4f) we see that the dominant surface tension
terms are

—h, (5.6a)

and i »
B, "2z =g haz (5.60)

where the former gives a measure of longitudinal curvature effects while the latter
gives transverse curvature effects. Clearly, from relations (5.6) when 0 < s < 2,
1 &
B_L > Fd ) (5.7)
and when s > 2,
1

= >

Bd > B_L (58)
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The two effects balance when s = 2. Therefore, in order to retain the appropriate
surface tension effect, we take

%=O(1) 0<s<2), (5.9a)
L
and
Ll =0(1) (s=2) 5.9b
Bd—E— (8/ . ( . )

This is reasonable from a physical standpoint since the Bond number B, is small
(Bg & 0.14 for a water rivulet with a height of 1 mm). Krantz & Goren (1970) retain
these terms (5.95) in their film flow analysis while Weiland & Davis (1981) use (5.9a)
in their analysis.

We shall now discuss the case s = } in detail. In §8 we discuss the results for larger
values of s.

6. Linear theory: ‘narrow’ rivulets with s =1
We set s = 1 and write for each dependent variable ¥ and for complex eigenvalue c,

V= Vot By + b+ O, |

6.1
¢ = co+ ke, + ke, +O(H). | 6.1)
The basic state (4.9) is known in powers of % so that we also have
U=7T, U, D),
U= U,+DKU,+0(D%) ‘l 62)

H = H,+ D H, +0(D%). |

When forms (6.1) and (6.2) are substituted into system (5.4), we obtain at order
unity:

Uoyy — 1D = 0, (6.3a)
Doy = 0, (6.3b)
Dp,z =0, (6.3¢)
ity + vgy +Woz = 0 (6.3d)
vy =—i(ug—co)+woHyz (Y = H,), (6.3¢)
—py=0 (Y=H,), (6.3f)
Wy = 0 (Y = H,), (6.39)
Ugy +ho Uypy =0 (Y = H,), (6.3%)
ug = Hio[uoy—% Uo,,] (Y =0), (6.34)
v=0 (Y=0), (6.35)

w, = —K—owo,, (Y =0), (6.3k)
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with contact-line conditions

ho+Hoyz Ay =0 (Z=1), (6.4a)
hg—HyzB,=0 (Z=—1), (6.4b)
h —g‘ﬂh =0 (Z=+1) (6.4¢)

0Z 0o~ - = . .

Hy,
At order % we have

Uyyy —ip; = — Dugyzg, (6.5a)
Py =0, (6.5b)
Dp,; =0, (6.5¢)
i, +v,y+w,; =0, (6.5d)

v,+ Doy H, = —ic, hy—i(Uy—co) by +iDU, hy+w, Hyz + Dwy H, ,
+iU,y DH, hy+Dw,, H H,;, (Y = H,), (6.5¢)
-p, =0 (Y=H,), (6.51)
2DHyz[vyy —woz] —iDhy[Uyy Hyz + Uyl +w, 3+ woyy DH,
—DH} wypy+ Doy, =0 (Y =H,), (6.59)
Uy +ugyy DH — DHzug;— Dhyy Uyy+ by Uyyyy + b DU,y
+hyUyyyy DH,—DhyH,; Uy, =0 (Y = H,), (6.5h)

K h h, — h — K h
U, = Fo[uly Ho DUIY H 0Y+F(:2)DH1 UoY:I_F(z)DHl [qu—ﬁZ UoY:I (Y=0),
(6.51)
v, =0 (Y=0), (6.57)
w, }'; W,y — H2DH wyy (¥ =0), (6.5k)
with contact-line conditions
hy+Hy; A+ DH,; A, =0 (Z=1), (6.6a)
hy—Hy; B,—DH,; B, =0 (Z=—1), (6.6b)
D [ H,,h, DH ,,h, H —ic, h
| by ——0F2 M2 0 027 [y h] —2 (Z=+1). (6.6¢
7,G0) Hy  Hy | H, Tz e ool (86

We shall need only some of the equations at orders k, k%, and k2. At order k these are

Ugyy — 1P+ Du,zz = R[_i(ﬁo_co) U+ [70}’ v+ ﬁoz w,], (6.7a)
Py = 0, (6.7b)
Dp,, =0, (6.7¢)

1

—P: = B_Lhozz (Y =H,), (6.74)
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Uy +Uyy DH, +utoyy D*H, +jugy vy D*HY — D*H, 5 ug; — DHop u, 5 — D*H, p uy H,
— DU,z hyz— DUy hyy— D*U,yy Hy by + by Uy + Dby U,yy+D?h U,y
+h, DUyyyy Hy+ hy D*U,yyy Hy + 3o Uyyyyy DHE + by DE Uyvy H,
—h,DH,, ﬁoZY‘_ho D*H,, ﬁoZY —hy D*H,, UIZY —hy D*H,, UozYY H =0
(Y=H,), (6.7¢)

_ kK h DUIY hoD*H, U, hy D*H, on
uz - Hol:uaY H D UﬁYY Ho + Ho + H(z)
_h2 U0Y+h1 DH, on_ho D*H: ﬁoy]_'_[—xDzH,_*_xD“Hf] [ __hl i ]
Ho Hs Hz m @ J"7E,
h
with contact-lme condltlons
hy+Hyz Ay+DH ; A+ D*Hy,; A, =0 (Z=1), (6.8a)
h,—Hy, B,—DH,, B,~D*H,;, By=0 (Z=-1), (6.8b)
D [h _Hozz ha_Dsz h1+DHozz H,, hl_Dszzz hy
U, & (0) H,, Hy, H}, H,,
+D2lez Hyzhy + D*Hyyz H,ypy ho_ D*H,, 5 H}y ho]
H3, H}, H,

- —ic A_icohl_l_icohoDle
'Hy, Hyy H,

In writing down (6.7d) we have assumed, as discussed above, that

—icohyDH,; (Z=+1). (6.8¢)

2 Dkt 1 .
B,~ B, By ©9)
and
—1——= O(1) ask—0. (6.10)
B,
At order k% we use
Psy =0, (6.11a)
_Dpaz"'onY = 0, (6.11b)
—p—lh 31D[h H:l, (Y=H,) (6.11¢)
2= B, 122~ 2B, oz t1ozlz o) » .
And finally at order k* we use _
—Pay +%yy =0, (6.12a)
""Dp‘z"'wlyy"'DwoZZ = O, ’ (6.l2b)
1 31
—Pa+2[vyy — Hyzwoy] = BLhzzz 2B, o Dlhz Hyzl,z

15 1
_3_D [hoZHozH12]2+ Dz[hozng]Z (Y= Ho)~

B,
(6.12¢)
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The above system of equations are nearly identical to those in Weiland & Davis
(1981). The difference is that we retain the kinematic condition in the pointwise forms
(6.3¢) and (6.5¢). This is essential to completing the analysis.

6.1. Fixed contact lines
The contact lines become fixed when G’(0)— oo as seen from relation (5.4m) since
h=0 atZ=+1, (6.13)
which gives from relation (5.41) that
A=B=0. (6.14)

Since the contact lines are stationary, we can set the slip coefficient x = 0.
Given that linear stability theory represents a homogeneous eigenvalue problem,
we pose a normalization condition, namely

h=1 atZ=0, (6.15)

which determines the arbitrary multiplicative constant associated with the
eigenfunction.

To solve this system we consider (6.3b, c, f) and find that

P =0. (6.16)
Similarly, (6.5b, c, f) give
p, =0. (6.17)
Again, (6.7b, c) give that p, is constant; (6.7d) and (6.13) then give that
ko = 3B p,[1—-27], (6.18)
and using the normalization condition (6.15) we find that
p, = 2Bt (6.19)
and
hy=1—22 (6.20)

The streamwise velocity u, is then obtained from (6.3a) subject to conditions '(6.3 k)
and (6.37). We find that

Ug=h, Y. (6.21)
Next, since (6.11a) gives p; independent of Y, then p, is given for all ¥ by (6.11¢).

However, at this point A, is still unknown. In order to determine &, we first obtain
the transverse velocity w, from (6.11b) subject to conditions (6.3¢g) and (6.3k):

w, = Dpyz YR Y —H,). (6.22)
Then, using (6.3d) and (6.33), we solve for v, to obtain
v = —4ihy Y2 —4Dpyzz Y* +iDpszz Y?Hy+3Dpyz Y?Hy ;. (6.23)

We now substitute (6.21), (6.22) and (6.23) into the kinematic condition (6.3¢) and
rewrite in terms of p, to obtain:
(3Dpyz H3lz = i(Hy—cq) hy. (6.24)

Now, since p, is proportional to k,,, by relation (6.11¢), then (6.24) is a non-
homogeneous fourth-order differential equation for %, in the transverse variable Z.
The general solution will contain four integration constants plus the unknown
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eigenvalue ¢,. Thus we need five boundary conditions. Three of them are given by
(6.13) and (6.15). The other two come from the bounded-velocity condition. If we
integrate (6.24) and substitute for p,, in (6.22), we find that the condition of bounded
velocity at the contact lines Z = + 1 requires that the constant of integration be set
equal to zero; this determines c,), '

co = 24 = 0.686. (6.25)

¢, is the phase speed of the small-amplitude waves and its magnitude is twice the
average surface speed of the basic-state rivulet (Weiland & Davis 1981).

This agrees with the result of Weiland & Davis (1981) who require only a
satisfaction of the kinematic condition in integrated form. However, Weiland & Davis
are unable to determine A, since the kinematic condition is not applied pointwise.

We solve (6.24) using (6.13) and (6.15) to obtain

h, = 3DZ*(1— Z*)—iD' B, Z*[0.339 + 4Z%|+iD'B,
x {—0.129(1 — Z2) log (1 — Z%)+ 0.257 [(1 + Z) log (1 + Z)+ (1— Z) log (1— Z)]}.
’ (6.26)

The procedure to determine the eigenvalue corrections follows similarly. We see
that (6.12a) subject to condition (6.12¢) allows us to determine p, in terms of the
unknown A,. We solve for the velocity components u,, v,, and w,, and substitute them
into the kinematic condition (6.5¢). As before, this results in a fourth-order
differential equation in the transverse variable Z. The boundary conditions are
(6.13), (6.15) and the bounded-velocity condition. Upon integration of this equation
and the requiring of bounded velocities, we obtain the eigenvalue correction

c = 01R+icll = "0.538D_0.0033iD_1BL (6.27)

Stability is determined through the sign of ¢;. At this point we have only the
leading-order term c,; and this contains no kinematic terms. From (6.7a) we see that
we need to go to order k in order to get them. The algebra becomes very complicated
at this order. Since we only want the correction c,;, we shall simplify matters as
follows. First of all, rather than determining u,, v,, and w,, and then using the
kinematic condition to obtain a differential equation for A,, which we would integrate
once and apply the bounded-velocity condition to obtain c,, we shall use a method
based upon (2.17). The order-k form, obtained by integrating (2.17) with respect to
Z, linearizing, and then evaluating the resulting expression at the contact lines gives
the mass flux through the contact line as follows:

HO . —_—
J wde=—i{J[DzUz(Ho, + 1) hy+ D2U,(H,, +1)H, hy+DU,(H,, +1)h,

+1D*U,yy(Hy, 1) Hhy+ D*Uyy(Hy, 1) Hyhg+ DU,y (H,, £1) Hi by

+Ty(H,, +1) hy—cyhy—c, hy—c, 2]dZ+J[D’uo(H0, +1)H,

Hl'l
+Du,(H,, +1)H,+1 D%,y (H,, 4_-1)111'A;+jo ude]dZ}+b, (6.28)

where b is a constant of integration. If the velocity is bounded, then the mass-flux
vanishes and the right-hand side of (6.28) must be zero. The resulting equation has
four unknowns, u,, A,, c,, and b. However, we can solve for u, and A, from previous
work and thus, since form (6.28) applies at both Z = +1, we have two equations to
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determine the two unknowns ¢, and b. To make matters even simpler, we solve only
for ¢,; and thus need only to determine the imaginary parts of u, and k,. Using this
simplification, we solve for ¢;; and Im(b) from the following two equations obtained
from (6.28):

J‘[D(']—I(Ho, +1)Im(h,)+ U,(H,, +1)Im(k,) —cyr hy—Im(c, ;)

—c¢, Im(hy)+ DH, H, Im(h,) + LH Im(u,)d Y] dZ+1Im()=0. (6.29)

To get Im(h,) we solve the fourth-order differential equation for %, using the
contact-line conditions (6.13), 6.15) and bounded velocities. Then, to get Im(u,), we
solve (6.7a) subject to conditions (6.7¢) and (6.7f). We then substitute these into
(6.29) together with all the other known quantities and find that Im(b) = 0 and

¢y = 0.031[R—14.7B71 +0.483B, . (6.30)
In summary, for the case of fixed, straight contact lines and
0% = Dk, (6.31)
we have the phase speed for linearized waves
Cr Z 0.686—0.538 Dk + O(k). (6.32)

These flat rivulets on vertical walls are stable to small, long-wave disturbances as long
as ¢; < 0, where

¢; = —k0.0033B, D +0.031k[R— 14.7B7' + 0.483B,]+ O(K).  (6.33)

We note here that the term proportional to B! in relation (6.33) represents the same
surface-tension mechanism which stabilizes two-dimensional long waves in film flow.
However, we see that the presence of the fixed contact lines adds an additional
stabilizing mechanism proportional to B, = B,/Dk. Thus its effects are strongly felt
when surface tension is small.

6.2. Moving contact lines

For the case of moving contact lines let us consider the contact line condition (5.4m)
in the form

HZZ h _ L 2 —_
hy——fE= = il - (14 8'HY) (2= %) (6.34)
where
G, = w. (6.35)

We shall assume that G, is an order unity parameter so that we can use the full
contact-angle-versus-speed condition (6.34). Then by varying &, through the range

0<G, <o, (6.36)

which is equivalent to letting ¢(0) vary from 0 to co, we shall be able to describe
the contact-line motion from a fixed contact angle to a fixed contact-line regime.
This of course will be done by keeping &% fixed. However, it is noted that one could
also vary G, as in range (6.36) by letting * vary from oo to 0. According to (3.2),
this means that the rivulet becomes wider. In other words even though the contact
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lines can move, the rivulet can be so wide that these effects are overwhelmed and
the overall result is similar to that of a fixed contact-line case. That such an
explanation is reasonable will become more apparent when we show that fixed-
contact-line-rivulet behaviour appears to be the same as that of a film flow.

The governing equations, boundary conditions, and normalization conditions for
moving contact lines are those given in (6.3)(6.12) and (8.15), except for conditions
(6.4¢), (6.6¢), and (6.8¢). At orders 1, ki, and k these, respectively, become

Hyzzh h
hog——2220 = —ic, G, 7~ (Z=1=1), 6.37
0Z Hoz (] IHGZ ( ) ( )
hyg __Hozz h, _DH1ZZ hy +Hozz DH\ b,
¥ Hy Hyg H,
. -—clho__c(,h1 cohoDle_ :| _
= Gl[ Ty hyDH,; | (Z==1), @.38)
h _HOZZ h?_DHIZZ hl + DHOZZ le hl _DzHSZZ hO +D2HIZZ HIZ hO
2 Hy Hyy H3, Hyy H},
+ D*Hyzz Hyzzhy _ D*Hyzz Hiz by
Hig Hy
= _i@ [caho+cl hl_clhoDH12+°oha_coh1 Dle__cohoDZHaz
'LHyz  Hyy H;z Hyy H;y Hy,
h 2
+%§Z—H¥£+cl ho DHyz+cohy DH,z+2cy b, DHIZ] (Z=21). (6.39)
We now proceed exactly as before and again we find

Po=p,=0. (6.40)

Next, (8.7b, ¢) give that p, is a constant. We then determine the leading-order
boundary perturbation 4, from conditions (6.7d) and (6.41). We find, using the
normalization condition (6.15), that

o =1—822, (6.41)
where
1+41ic, &,
=201 42
§ —1+1ic,@,’ (6.42)
and
28
P = B, (6.43)
Note that as G, > 00, then §—1 so that
hy = 1—2¢, (6.44)
and p, > 0 for fixed contact lines, and that as ¢, >0, S——1 so that
hy =1+ 22, (6.45)

and p, < 0 for fixed contact angles. This result is similar to that of Weiland & Davis
(1981) except that they have an additional term @, Z in their fixed contact angle result,
where a, is an arbitrary constant. We too would get this result if we set G, =0 in
form (6.34). However, further analysis will show that we need a, = 0 in order to
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0.653 |-
0.604 |-
Cor
0.555 |
0.506
0.457 1 1 1
-30 —-0.80 14 3.6 5.8

log,, Gy

Fi6URE 2. The phase speed cop, of the long-wave disturbances is plotted versus G, for various values
of the slip coefficient (x = 1078, 1073). The curves are indistinguishable.

satisfy the bounded-velocity condition. In addition we have extended the results of
Weiland & Davis (1981) in (6.41) to describe the interface behaviour as the contact-line
motion varies from fixed contact angle to fixed contact-lines.

The contact condition (6.4a) implies that the contact-line correction for each case is

—h
6, o0: A0=Hoz°=o at Z =1,

_ (6.46)
G,~0: A°=fhzo=l at Z = 1.

In other words the contact lines are most mobile for the case of fixed contact angle
and spread more slowly and through smaller distances as G, > 0. This is consistent
with our defining G’(0) as a quantity that measures the ability of a contact line to
spread for a given liquid—solid system.

The streamwise velocity %, is now obtained from (6.3a) subject to conditions (6.34)
and (6.37). The slip coefficient x is taken different from zero for this case since
contact-line motion occurs. This follows our discussion of the no slip condition in §2.
Independent of the value of x, we still find

ug=hy Y. (6.47)

Next, as before, p, is given exactly by condition (6.11¢) and A, is still unknown. So
we determine the transverse velocity w, from (6.11b) subject to conditions (6.3g) and
(6.3k). We obtain

w, = Dp,,AY*~H, Y —x). (6.48)
Then, using conditions (6.3d) and (6.3j), we solve for v, and find
vo = =iy Y2—1Dpyz; Y? +1Dpyzz Y2H +1Dpyz Y*Hyz+«Dpyzz Y. (6.49)
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Figure 3. The coefficient ¢,; is plotted versus G, for various values of the slip coefficient
(x = 1078, 1072). The curves are indistinguishable.

We now substitute forms (6.47), (6.48), and (6.49) into the kinematic condition (6.3¢).
As before, this results in a fourth-order differential equation in the transverse variable
Z for h,. We have

(3Dpsz Hy+ kDpyz Holz = i[ —co ho + by Hyl, (6.50)

where p, is proportional to k,;,. This time the four integration constants and
unknown eigenvalue ¢, are determined through the normalization condition (6.15),
the moving-contact-line conditions (6.38) and the bounded-velocity condition. After
one integration of (6.50) we apply the boundedness condition to (6.48) and determine
the integration constant to be zero and find the leading-order eigenvalue

_ 8(71—-8)

Cy = 35(3_S)+K. (6.51)
When G, >0 and thus §>—1 we have
Cp = 3+k = 0.457+«k, (6.52)

which is the phase speed for small amplitude waves on rivulets with fixed contact
angles. This result agrees with that of Weiland & Davis (1981). At the other extreme,
G, o0, we recover condition (6.25). Figures 2 and 3 show how ¢, and ¢,; vary with
G, and table 1 gives numerical values. Either from the table or from substituting S
into relation (6.51) and solving for c,, one sees thatt ¢,; varies as @, for small G, and
as 1/G, for large G,. In addition it is negative for all G,. Thus the contact-
angle-increasing-with-contact-line-speed effect is always stabilizing to the system.
This too agrees with earlier findings of Davis (1980).

We note that the form of (6.51) and the value of ¢,y in table 1 suggest that we

t The second root of the quadratic equation gives a strongly damped mode.
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require the slip coefficient x to be so small that the phase speed is only slightly
affected. This is reasonable since we want the effects of slip to be local to the contact
lines. Therefore, we restrict « to be less than 0.01 so that ¢, varies less than 39, as
« varies from zero to 0.01. Greenspan (1978) also chooses the value 0.01 as an upper
bound for his slip coefficient. Table 1 (a) gives results for x = 0.001. In comparison
with table 1(a), where x = 10~8, we see that c,g, and ¢, vary negligibly as shown
in figures 2 and 3.

Now after one integration of (6.50) and the applying of the boundedness condition
we have the following differential equation to solve for &, :

iB, [(1 —¢,) Z— (34 (98/35)) Z* +;st]
D 11—-22 +« ’

subject to conditions (6.15) and (6.38). At this point, though, ¢, in (6.38) is unknown.
However, we can in principle integrate (6.53) three times and apply the boundary
conditions (6.15) and (6.38) to determine A4, in terms of c,.

Upon completing this integration we find that restrictions must be placed upon
the slip coefficient « in order that our asymptotic expansions be uniformly valid. In
particular we need that

max (e~7, ®) < k < 0.01, (6.54)
where
DS
Y= E, (6.55)
_ Baz,b’)2
®— ( 149 (6.56)

Here £ is a coefficient depending upon G, such that g decreases monotonically from
a value of 3¢ at G, = 0 to }(3«)! at G, = 00. See Appendix A for details. For values
of B; near 0.05 we find that restriction (6.54) is satisfied for

107 <k < 1073, (6.57)

Thus we place the lower bound restriction on the slip coefficient « in order that our
expressions for pressure, curvature, contact angle, and interface shape are mathe-
matically well-defined quantities, and we place the upper bound restriction in order
that slip effects be confined to the contact-line region.

Now, as before, solving (6.12a) subject to condition (6.12c¢) allows us to determine
P, in terms of the unknown 4,. We then solve for the velocity components u,, v,, and
w,, and substitute them into the kinematic condition (6.5¢). This results in a
fourth-order differential equation in the transverse variable Z for k,. The boundary
conditions are (6.15), (6.39) and the bounded-velocity condition. This equation is
solved numerically using the computer package SUPORT; see Scott & Watts (1977).
We thus determine the eigenvalue correction

¢, = [Cyr B+ Cyr1+i[C, B +C4), (6.58)

where the C; and C;y are numerical coefficients. Table 1 gives values for these as G,
varies from the fixed-contact-angle to the fixed-contact-line regime.
The stability criterion at this stage is

¢ = Cor+ k2 [C, B+ C, 1+ O(k), (6.59)

and so as before we need to go to higher order to obtain kinematic terms. Thus we
shall use the short cut described in obtaining (6.28) in order to determine c,. First
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we solve for u, and h,. From (6.39) we notice that h, depends on ¢, just as h, depended
on ¢,. The analysis for separating this dependence follows the same as that for 4.

As before we set (6.28) equal to zero. The integrations in (6.28) are done numerically
using Simpson’s rule. Satisfying the two conditions stated in (6.28), we obtain the
eigenvalue correction ¢,;. We find that

¢y = CuR+C, B;'+C, B, +C, B} +C,, (6.60)

where the C; are numerical coefficients depending on G,. In table 1 numerical values
are given for these coefficients. The contribution from C, is negligible compared to
those of ¢,; and ki C; for small k and thus is not listed.

In summary for the case of rivulets with moving contact lines and widths related
to wavenumber as in relation (6.31) we have the disturbance phase speed

g = Cor+ k3 [Cog B, + Cyr]+0(k), (6.61)

and flat rivulets on vertical walls being stable to small long-wave disturbances as long
as ¢; < 0, where

¢; = Cop+#[C, B, +C,)+k[C,R+C, B;*+C, B, +C, B3]+ O(k}),  (6.62)

with all coefficients listed in table 1.

We note that B; = B, Dki is chosen small enough in (6.62) so that restriction (6.54)
is satisfied for x = 1073 and x = 1078 We could allow larger values for B, when
x = 1072 but choose not to for comparison purposes. Table 1 shows that the neutral
curves are nearly indistinguishable for G, greater than 8.2. We note here that if we
were to continue the analysis to obtain corrections to relation (6.62) at order 44, an

examination of (5.4f) reveals that streamwise curvature effects proportional to
C, k¢ B! = C, B;! would appear.

7. Results

We now consider the expression (6.62) for the growth rate ¢;. The signs of the
coefficients C; and ¢,; determine whether the terms are stabilizing (— ) or destabilizing
(+) to the system. We note that c,;+ ki C; and (ki C,+ kC,) B, are always negative
80 that the main prediction is that of stability. However, C, and C; change sign and,
consistent with the perturbation nature of result (6.62), the system can be made less
stable. However, if we were to push (6.62) beyond its expected range of validity by
considering larger values of k, then ¢; may become positive, implying instability. Such
information can be suggestive in understanding the physical mechanisms present in
the system.

For the latter reason we consider the following three rivulet flow regimes:
0<G,<74,74< G, <84,and 8.4 <G, < . In the first region, 0 < G, < 7.4, G,
is small enough that we are describing ‘narrow’ rivulets with fixed contact angle and
very mobile contact lines. Here C, < 0 and C; > 0 so that surface-tension effects are
destabilizing to the system whereas flow effects are stabilizing. Such a situation may
lead to a capillary instability in the rivulet, resulting in the rivulet breaking up into
drops in much the same way as a capillary jet. This behaviour was seen by Culkin
(1981) in his rivulet experiments. In figure 4 we plot the expression (6.62) for c; versus
the wavenumber k. The dashed portions of the curve denote the regions where the
asymptotic expansion (6.62) may be breaking down since the O(k) terms are becoming
comparable to those of O(k3). Figure 4 shows that as the mobility of the contact lines
decreases or as the rivulet becomes wider (both cases corresponding to larger ¢,) the
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FioUre 4. Plot of the growth rate expression (6.62) using values from table 1 describing a ‘narrow’
rivulet with very mobile contact lines (G, = 0.002) and a wider rivulet with less mobile contact lines
(G, ="7.0). Here R=15.0 and B}, =0.75. The dashed portions denote where the asymptotic
expansion (6.62) may no longer be valid.
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Figure 5. Plot of the growth rate expression (6.62) using values from table 1 describing a fixed
contact line rivulet (G, = o) and a narrower rivulet with more mobile contact lines (&, = 2000).
Here R = 15.0 and B, = 1.0. The dashed portions denote where the asymptotic expansion (6.62)
may no longer be valid.
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FicURE 6. A comparison of the growth rate expressions for a film flow with a rivulet flow. The results
found by Weiland & Davis (1981) are nearly indistinguishable from our fixed contact line result.
Here R =2.0 and B, = 1.0.

region of stability increases; it is more difficult for the contact lines to approach each
other and pinch the rivulet.

In the second region, 7.4 < G, < 8.4, both C, and C; are negative. Thus flow effects
and capillary effects are both stabilizing to the system. Here ¢; < 0 and it appears
for rivulets of width and contact-line mobility characterized by @, in the above
region, that the basic-state straight rivulet is stable to small amplitude disturbances.
J. Kern (1975 unpublished) and Culkin (1981) also find experimentally a region of
flow rates within which the straight rivulet is stable to even large amplitude
disturbances.

Finally, in the third region, 8.4 < G, < o, C, > 0 and C; < 0 so that flow effects
are destabilizing whereas capillary effects are stabilizing. This behaviour more closely
resembles that of a film flow. Since G, is large in the above region, then we are
describing very wide rivulets with rather immobile or even fixed contact lines. In
figure 5 we plot the expression (6.62) for a fixed contact-line rivulet and for a less-wide
rivulet with rather immobile contact lines (G, = 2000). It is seen that the narrower
rivulet with mobile contact lines is more stable, implying that mobility may have
a stabilizing effect on film flow instability.

In figures 6 to 8 we compare the growth rate expressions ¢; for small amplitude,
two-dimensional, long-wave disturbances in film flow, given by Yih (1963), and the
expression found by Weiland & Davis (1981) for fixed contact-line rivulet instabilities
with the results we show in figure 5. Yih (1963) gives (in our notation)

o = &k(R—3BLY), (7.1)
while Weiland & Davis (1981) find that
¢y = 0.031(R—14.8B1Y). (7.2)

In figure 6 for R = 2.0 and B, = 1.0, all four expressions predict stability. In figure 7
for R =5.0 and B, = 1.0, only the film flow is predicted to be unstable. This is
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FiGURE 7. A comparison of the growth rate expressions for a film flow with a rivulet flow. The results
found by Weiland & Davis (1981) are nearly indistinguishable from our fixed contact line result.
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Ficure 8. A comparison of the growth rate expressions for a film fiow with a rivulet flow. Here
R =15.0 and By = 1.0. The dashed portions denote where the asymptotic expansion (6.62) may

no longer be valid.
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because the stabilizing capillary effects are stronger in rivulets due to the presence
of the curved meniscus. In figure 8 for R = 15.0 and B, = 1.0 all four expressions
predict instability though the & is large enough that our asymptotics may no longer
be valid. We see that the presence of the contact lines makes the rivulet stable to
small amplitude disturbances at very small wavenumber. In this region film flow is
unstable and Weiland & Davis (1981) predict rivulet instability with £ = 0 being a
neutrally stable state.

8. Discussion and summary

We consider the flow of a rivulet down a vertical wall. The ratio ¢ of the maximum
rivulet height to the maximum half width of the rivulet is assumed to be small. We
allow slip between the liquid and the solid surface at the contact line using a Navier
slip model with a slip coefficient inversely proportional to the height of the interface.
We consider long-wave disturbances having wavenumber k. When § € 1 and k <€ 1,
we examine a linear stability analysis of the basic straight rivulet by assuming
0% = O(k®). This family of problems divides into three categories:

. ) 2 1 . ,
(i) 6>k; s<2 »Bd—BL—O(l) narrow’,
. C e= ke _ o

(ii) 6=k; s=2 »Bd—Bd—O(l),
2

(iii)) od<k; s8>2 »% = 0(1) wide.
d

Here the parameter s measures the relative degree of the width of the flat, wide
rivulet. In case (i) the rivulet is narrow enough that cross-stream curvature effects
dominate streamwise curvature effects. In case (ii) the two effects are comparable,
while in case (iii) streamwise curvature effects are the more important. For the
limiting case, s-—+c0, we obtain results for an infinitely wide rivulet, which is
equivalent to a two-dimensional film flow. In fact for s > 2, the film-flow approxi-
mation is valid (Young 1985). Long-wave disturbances are realized through the usual
normal-mode assumption. Hysteresis is not included in the analysis since it cannot
be retained upon linearization (Davis 1980). Therefore we allow the contact angle 6
to be a linear function of the contact-line speed U, namely 6 = ¢ +G’(0) Ug,. The
static angle ¢ measures the wettability of the solid and the slope ¢'(0) measures the
mobility of the contact lines. When G’(0) is small, the contact lines are very mobile
and G’(0) >0 gives the fixed-contact-angle case. When G’(0) is large, the contact lines
are very immobile and G’ (0) > oo gives the fixed-contact-line case. In our formulation
we introduce the parameter @, in (6.35), proportional to G’(0), to measure the
importance of the rivulet width and the mobility of the contact lines. We see that
large G, can describe either a very wide rivulet or a rivulet with almost fixed contact
lines. Likewise, small G, corresponds to a narrower rivulet or one with very mobile
contact lines.

We perform an asymptotic analysis of the linearized disturbance equations. For
the case of fixed contact lines, all results can be obtained analytically. For the case
of mobile contact lines we need to integrate some quantities numerically. We use the
asymptotic results as a check on the numerical results.
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Our results can best be summarized through the expression (6.62) for the growth
rate ¢;. This expression for the case s =} can be simplified by neglecting the terms
of orders k£ B, and k B}. The result is as follows:

¢;=C,+k[C, B, +C,]+k[C,R+C, B{"|+ 13 C, B}, (8.1)

or equivalently
¢;=C,+C,B;+kCy+k[C, R+C,B;' |+ K C; B, (8.2)

where C, = ¢;. Here C, to C; are functions depending strongly upon G, and weakly
upon the slip coefficient k. B; is a Bond number based upon the maximum height
of the rivulet. B, is a Bond number based upon the maximum half-width of the
rivulet, and R is the Reynolds number. Stability is obtained when ¢; < 0. We have
shown that ¢; is composed of four contributions:

1. C,+#kC, — contact-angle effects;
2. C, Bi*, C, B3 — capillary effects;

3. C, B, — contact-line effects;
4. C,R — flow effects.

C, to C; depend weakly upon the amount of slip between the liquid and the solid
at the contact line. On one hand, x should be small enough that the bulk flow is
unaffected by the presence of slip near the contact lines. On the other hand, x should
be large enough that the force singularity is appropriately removed. Our results show
that it is the value of log x which emerges, as expected from the results by Hocking
(1977, 1983), and Greenspan (1978) for other problems. Within the range of x 1078
to 1073, we find that C, to C, are nearly independent of slip; presumably the same
holds for C,. -

For the case s = 1, C, to C, are strongly dependent on the width of the rivulet and
the mobility of the contact lines, both of which are characterized by G,. Equations
(8.1) and (8.2) apply with the coefficients listed in table 1. If one wishes to examine
rivulets that are much wider than the class considered, one must allow larger values
of 8. For 1 < s < 2 Young (1985) develops nonlinear evolution equations for h(z, z, t)
and from these finds the equivalents of C, to C,, as discussed below. Young (1985)
also considers s 2> 2 and finds that s = 2 is the asymptotic equivalent of the ‘widest’
rivulet-film flow. We now discuss the full range of G, and s, using in part results
obtained by Young (1985).

C, to (g are strongly dependent on s and G, and thus are strongly dependent on
the width of the rivulet and the mobility of the contact lines. We find the following
behaviour for each:

C,+#C, negative for all G,; proportional to G,, for small G, and proportional
to G;! for large G,; C,+kC,~>0 as s> 0.

C, negative for all G, and such that |C,| decreases monotonically as
G,—> 0; C,—~0as s—>o0.
C, negative for small G, and positive for large G,; C, approaches the

film-flow value as s> 0.

C; positive for small G, and negative for large G, ; C; approaches zero as
8—> 0.
C, approaches the film-flow value as s—oo. (All results for C; are

obtained through a consideration of a nonlinear evolution equation
developed for wider rivulets, Young 1985.)
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One must be cautious in taking the limit s> 0o to get film flow since the presence
of the contact lines and the contact-line boundary conditions make this a singular
limit.

We interpret the above results as follows for each of the effects (1)—(4).

1. Contact-angle effects. The contact angle increases with advancing contact-line
speed or decreases with receding contact-line speed. This effect together with the
contact-line effects is always stabilizing to the system. This effect weakens when the
contact angle is nearly fixed and when the contact line is nearly fixed, since for both
these cases the contact angle is nearly independent of the contact-line speed. This
effect is also negligible for wide enough rivulets.

2. Capillary effects. Corrugations of the interface produce pressure gradients driven
by surface tension. These gradients are destabilizing, similar to those of the capillary
instability of a jet, when the contact lines are very mobile, yet are stabilizing, similar
to those of film flow, when the contact lines are fairly immobile. Likewise, as the
rivulet widens, these effects become more like those in a film. Obviously, the presence
of the solid surface distinguishes the film behaviour from the jet behaviour. Our
results indicate that this difference can be overcome by increasing the mobility of
the contact lines.

3. Contact-line effects. Regardless of the mobility G'(0) of the contact lines, the
presence of a contact line is always stabilizing. Wide rivulets are affected less by the
presence of contact lines than the narrow ones.

In essence the capillary-effect (B7! and B3') terms describe the surface-tension
effects away from the contact lines and the contact-line effect (B;) terms describe
these effects near them. Rosenblat & Davis (1984) call the effects ‘capillary push’
and ‘contact-line pull’, respectively. For the case of fixed contact angle the two effects
oppose one another in that the contact lines move to squeeze fluid into thinner regions
whereas capillary pressures pump it out of these regions. If capillary pressures win,
then thick portions of the rivulet tend to swell. The contact angle in these portions
becomes larger than the static angle and so the contact lines advance as shown in
figure 9. The opposite occurs in the thinner portions; these sections shrink, the contact
angle is smaller than the static angle, and so the contact lines recede. The result is
that drops are pinched from the rivulet. On the other hand, for very immobile contact
lines (large G,) both the ‘capillary push’ and ‘contact-line’ pull effects work to pump
fluid into thinner regions. As shown in figure 9, thick portions shrink (thin portions
swell) thus causing the contact angles to be less than (greater than) the static contact
angle. Thus, the contact lines of the thicker portion recede and those of the thin,
advance. The result is a stabilization of the rivulet to long-wave disturbances.

4. Flow effects. Increasing the flow rate tends to stabilize the capillary instabilities
for small G} and enhance the kinematic-wave instabilities for large G,.

We conjecture that these effects combine to give the following rivulet flow regimes.
When the rivulet is ‘narrow’ and the contact lines are mobile, so that G, is small,
the capillary effects can lead to a break-up instability. This instability can be
overcome if the Reynolds number R is large enough. On the other hand when the
contact lines are less mobile, so that G, is large, the capillary instability is suppressed
because the contact lines can no longer move together and pinch off drops. Now the
rivulet is susceptible only to a kinematic-wave instability which occurs at high flow
rates. Here capillary effects oppose the instability while flow effects enhance it.

When the rivulet is wide, independent of the mobility of the contact lines, it is
susceptible only to a kinematic-wave instability. The rivulet resembles a film and the
bulk flow does not feel the motion of the contact lines. However, the presence of the

2 rLM 176
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Figure 9. Contact line motion: (a) In the capillary break-up of a rivulet flow, fluid is pumped from
thin regions into thick regions. The thick regions swell causing the contact lines to advance. The
thin regions shrink causing the contact lines to recede; (b)) When a rivulet is susceptible to a
kinematic-wave instability, capillary pressures help to stabilize the rivulet by causing fluid to be
pumped from thick regions into thin regions.

contact lines is felt so that the rivulet is more stable to long-wave disturbances than
is film flow.

The effects of the contact lines are strongest as k >0. When G, is small, the capillary
instabilities are weak for very long waves because the interface is nearly flat. Thus,
unlike the jet, the rivulet flow is stable for very small wavenumbers. At the other
extreme, for large G, the presence of the contact lines gives a region of unconditional
stability for a rivulet, in contrast to that of a film flow.

We note that our analysis always predicts varicose instabilities and thus there is
no prediction of rivulet meandering, a sinuous instability. The meandering rivulets
observed by Culkin (1981) are rather narrow, é ~ 0.9. The resulting higher cross-
stream curvature in his rivulets may lead to the side-to-side shimmering of the rivulet
which he observes just before meandering takes place. This suggests the development
of transverse waves across the rivulet width. We have not included hysteresis in our
analysis. Since Culkin does not test any low hysteresis systems (because none were
available), it has not been concluded that such rivulets can meander. If it were true
that meandering depends upon the presence of hysteresis, then our obtaining only
varicose instabilities rather than sinuous instabilities would be consistent with the
no-hysteresis assumption. It may also be true that meandering is an instability from

a disturbed state different from the straight rivulet and it represents a secondary
instability.
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Appendix A
In order that our asymptotic expansions for pressure, curvature, contact angle,
and interfacial shape are mathematically well defined, we require that restrictions
be placed upon the slip coefficient x. Upon integrating (6.53) once we find that
3iB,,

{ps1-2)+16- 49108101 - 22434

+[8—c,—&S—18(3x)1] (3x)~1 tan™? (1(3;‘:;)} +7, (A1)

where 7 is a constant of integration.
We now consider the pressure field

p= Ic%‘i+ H;—L{%@—#S) log [(1—2Z2)2+ 3«]

+[3—c,—AS—18(3«)}] (3x) "} tan—? (%;—f;) +1} , (Ala)

obtained from (6.40), (6.43) and (A 1). We have neglected terms which are bounded
at the contact lines at order k. The constant of integration 7 is determined through
the boundary conditions (6.15) and (6.39) in a later analysis and it is found that 7
is proportional to

L1 |
—[$—c,— &S —1S(3«)4] (3«) "} tan? (W) . (A 2)
Now form (A 1a) will be uniformly valid as long as
K log[(1—2?%)® +3«] <£, (A3)
B,
which restricts the size of the slip coefficient so that
k » exp[—7], (A4
where
S DS
Y= m: = E, (A 5)
where we have used relation (6.9). In addition, we must also have
1 S
§ B(3x)~} tan-1 ) S
i B(3x)~1 tan (@‘—)1 <5 (A 8)

so that we need
kB g2 Bip®
x>%=ﬁ§s,= . (A7)

In this expression £ is given by _
B = [f—co—48—18(3x)l], (A8)

and in arriving at this expression we have used the principal value for the tan™ y,
—in <tan"'y < in.

2-2



30 G. W. Young and 8. H. Davis

We must satisfy conditions (A 4) and (A 7) simultaneously. From (A 5) we see that
if the Bond number B, is small then y will be large so that e is extremely small.
Thus, we can pick B, small enough so that

e < P, (A9)

and therefore satisfying condition (A 7) automatically satisfies (A 4).

The relation (A 8) shows that f decreases monotonically from a value of 3§ at
G, = 0,to1(3k)t at G, = 0. In fact for G, > 14, § ~ }(3«)i. If we substitute this value
for g into relation (A 7), we obtain

2D28? > B3, (A 10)

Since table 1 shows that S? is O(1) and D is also by definition O(1), then relation

(A 10) is easily satisfied for B; not too small. Thus, as long as G| > 14, then condition

(A 7) is satisfied for extremely small values of k and condition (A 4)is the only (rather

weak) restriction on «. For example if B; = 0.1 and DS = 1.7, then x > 107". This

agrees with our modelling assumptions about slip, since the larger G, is, the less mobile

are the contact lines. Therefore, one would expect that less slip is required.
However, if G, < 14, then #= 3 so condition (A 7) becomes

0.2B%
D28
Now if DS = 1.7 and B; = 0.1 as before, then we require that « > 1074 Thus, we need

larger slip near the contact lines. But in either case, whether G, is large or small, we
can still satisfy

k> (A 11)

max (e™?, ) € « < 0.01, (A 12)

for a wide range of values of B; and keep « small enough that its effects are felt only
near the contact lines.

In summary, we place the lower bound restriction (A 12) on the slip coefficient x
in order that our expressions for pressure, curvature, contact angle, and interfacial
shape are mathematically well-defined quantities, and we place the upper bound
restriction in order that slip effects be confined to the contact-line region. Greenspan
(1978) also recognizes that such restrictions are necessary when considering the
spreading of a drop on a horizontal solid. However, he poses only condition (A 4) as
the lower bound since he expands only contact angle and interfacial shape. Yet if
one differentiates the expression (A 3) of his Appendix, terms of the form

% tan™?! (%) (A 13)

appear where his A is our (3«):. Since his expression (A 3) is the derivative of the
interfacial shape, then its derivative is the curvature. Thus, the restriction (A 7) must
also be applied to his problem in order that interfacial curvature be well-defined
mathematically. We note that if x—0 in (6.53), then h,,, will not only have
logarithmic terms but also terms proportional to

1
-z

These lead to non-uniform expansions when 1+7 = O(kt). If (6.53) is rewritten as

[%(1 - Z2)2 + K) hlZZZ = hlparticular’ (A 15)

(A 14)
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we see that x = 0 means that (A 15) is a singular differential equation at the contact
lines Z = + 1. Thus slip is needed to relieve the singularity shown in (A 14). Slip serves
the dual role of relieving a multi-valued velocity field at the contact line, and allowing
for a bounded pressure field there. The latter role appears to be peculiar to problems
where the fluid thickness approaches zero, as at the contact lines in our model and
in the Greenspan (1978) model. Similarly, Silliman & Scriven (1978) find in their finite
element analysis of a die swell at a channel exit, that the pressure decreases near the
contact-line region as the slip coefficient increases. Hocking (1977) also finds that the
pressure drop required to cause the flow of two immiscible fluids through a capillary,
decreases as the slip coefficient increases.
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