
J .  Fluid M a h .  (1987), V O ~ .  176, p p .  1-31 
Printed in Great  Britain 

1 

Rivulet instabilities 

By GERALD W. YOUNG? AND STEPHEN H. DAVIS 
Department of Engineering Sciencea and Applied Mathematics, Northwestern University, 

Evanston, IL 60201, USA 

(Received 17 April 1985 and in revised form 16 June 1986) 

We examine a three-dimensional rivulet flowing down a vertical plane. There exists 
a basic state with fully developed, unidirectional flow and straight contact lines. In 
the absence of contact-angle hysteresis the slope of the contact angle versus 
contact-line speed relationship measures the mobility of these contact lines. The 
stability characteristics of flat rivulets subject to long wave disturbances are 
examined using lubrication theory. We find that kinematic-wave instabilities are 
predicted for wide rivulets or sivulets with rather immobile contact lines, while 
capillary break-up is predicted for narrower rivulets with mobile contact lines. We 
find for all cases that the expression for the growth rate depends weakly on slip 
between the liquid and solid near the contact line, but strongly on the shape of the 
rivulet and the mobility of the contact lines. We discuss in detail the mechanisms 
by which the contact lines affect the instabilities. 

1. Introduction 
A rivulet is a stream of liquid flowing down a solid surface and sharing an interface 

with a surrounding gas. A simple example of a rivulet is a stream of water seen 
on the windshield of a car after a rainfall. 

Rivulets occur in a wide variety of engineering applications. Drops rolling off a 
surface used for condensation may coalesce, forming a rivulet. Rivulets arise in the 
melting and casting of metals. In processes of heat exchange and gas absorption, 
rivulets play a major role since they have a large surface area to cross-sectional area 
ratio. This allows for enhanced heat transfer. In  industrial coating processes using 
liquid layers, the film may become unstable, breaking up into rivulets. In  all of the 
above areas, a knowledge of the fluid motion and stability characteristics of rivulet 
flow is required to assess the efficiency of the process. 

As shown in figure 1 ,  a rivulet has b o  contact lines. The motions of these contact 
lines can give rise to rivulets with many different geometrical configurations. The 
simplest of these is the straight rivulet considered by Towel1 & Rothfeld (1966). This 
is a rivulet with straight, parallel contact lines whose flow is steady, fully developed 
and unidirectional. The interface forms cylindrical meniscus. Such rivulets exhibit 
a wide variety of instabilities. Kern (1969,1971,1975 unpublighed) and Culkin (1981) 
see the break-up of straight rivulets into drops, rivulet meandering, formation of large 
amplitude surface waves, and the transition of rivulet .flow from laminar to turbulent 
regimes. Our work will concentrate on the break-up and surface-wave instabilities. 
These two features of rivulet flow tempt one to classify rivulets somewhere in between 
capillary jets and film flows. It is not surprising that rivulets are susceptible to a 
dropwise break-up since they possess a curved meniscus as discussed by Davis 
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FIGURE 1.  Sketch of a rivulet flowing down a vertical wall : (a) side view ; (b )  top view; 
(c) front view. 

(1980). This curvature allows for a capillary instability (Rayleigh 1879) where surface 
tension causes capillary pressure gradients which force fluid from thinner to thicker 
regions. On the other hand, wide rivulets with flat interfaces clearly resemble films. 
It is well known (Benjamin 1957; Yih 1963) that films are susceptible to kinematic- 
wave instabilities. Thus, one also expects surface waves to develop on rivulets. 

The goal of the present work is to investigate the break-up and kinematic-wave 
instabilities for the purpose of further determining the effects of the presence of 
contact lines and boundary conditions posed there. As previous studies of flows with 
moving contact lines have shown [see Dussan V. & Davis 1974; Dussan V. 1976; 
Greenspan 1978, for example], it is convenient to allow the fluid to slip along the 
solid surface in the vicinity of the contact line; this suppresses the non-integrable 
stress singularity that would otherwise appear. In addition one must pose boundary 
conditions at  the contact line in order that there be a mathematically well-posed 
problem which leads to physically realistic results. The following three types are 
most often posed: 

(i) condition of contact, 
(ii) condition of contact angle changing with contact-line speed, and, 
(iii) condition of bounded velocity at  the contact line. 
The first of these defines where the interface contacts the solid surface. As discussed 

by Young (1985), the last states that the contact line is a fluid boundary. The second 
is usually posed as the form 8 = %( UcL) where 8 is the angle measured from the solid 
surface to the interface at the contact line, and U,, is the speed of the contact line 
measured relative to the speed of the surface. The function G is usually chosen to 
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describe experimental observation. The most common forms of G (Davis 1980) 
represent contact-angle hysteresis, fixed contact lines, fixed contact angle, and 
smooth contact angle variation. The slope c ' ( O ) ,  when it exists, measures the mobility 
of the contact line whereas the static contact angles measure the wetting 
characteristics of the solid. 

There has been one previous theoretical analysis (Weiland t Davis 1981) of 
dynamic rivulet instabilities. However, their formulation appears to be incomplete 
in that they do not pose the boundedness condition. Thus they need to introduce ad 
hoc procedures to determine unknown constants of integration. 

We begin by formulating the problem for flow of a rivulet down a vertical plate. 
We allow slip between the liquid and the solid at thepontact line by posing a slip 
condition similar to that of Greenspan (1978). We assume a linear relationship w i t k t  
hysteresis between the speed of the contact line and the contact angle. The slope c'(0) 
of the advancing and receding portions of this relationship may take on values from 
zero to infinity so that the contact-line motion can vary from fixed-conhct-angle to 
fixed-contact-line regimes. Thus we can determine the effects of the mobility of the 
contact lines. 

The system governing the above is then non-dimensionalized. The streamwise and 
normal coordinates are scaled on the rivulet height while the cross-stream coordinate 
is scaled on half the rivulet width. It is assumed that long-wave disturbances are 
present so that a non-dimensional wavenumber k, and aspect ratio 6 result. 

We discuss a linearized instability of the straight rivulet for k and S small. In  order 
to do asymptotics in two small parameters, we assume that k and S are related 

(1.1) 
through an expression of the form s2 = O(k8).  

By varying s from 0 to 00 we can allow the rivulet to widen to the extreme case of 
film flow. We perform the analysis for various values of s in relation (1 .l) to determine 
the effects of the width of the rivulet on the stability characteristics. We compare 
our results with the experimental observations of Kern (1969,1971,1975 unpublished) 
and Culkin (1981). Finally, we disc~.~ss the mechanisms by which the contact lines 
affect the stability characteristics of rivulets. The importance of these mechanisms 
is measured by a parameter GI, proportional to 

which is a ratio of the mobility of the contact lines to the square of the width of the 
rivulet. 

2. Formulation 
Consider a rivulet flowing down a long, smooth, vertical plate as shown in figure 1. 

The rivulet consists of a Newtonian fluid which has a constant density p and a 
constant viscosity p. The surrounding fluid is (I passive gas with a constant pressure, 
which we take equal to zero. The entire system is isothermal. 

The governing equations for the system are the NavierStokes equations and the 
. 

continuity equation : (2.1) 
and 

where ui is the velocity vector (u~) = (u, v, w), g$, is the stress tensor, 

gt, = - PS,, + PL(U$, , + u,, $1 9 (2.3) 
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and Fg is the gravity force per unit mws, 
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(4) = (8, 090). 

The above equations refer to a right-handed Cartesian coordinate system whose 
origin is on the plate, whose z-axis points down the plate and whose y-axis points 
normal to the plate into the liquid, as shown in figure 1. 

There are boundary conditions appropriate to the liquid-gas interface at 
y = h(z,  z, t ) .  These are the kinematic condition 

v = h, + uh, + wh,, (2.5) 

u,,n,n, = 2HT, (2.6) 

utjnjt,, = 0, (2.7) 

ut, n, t,, = 0. (2.8) 

and the stress balances 

The first of these states that the interface is a bounding surface between the fluid 
and the gas, while the stress balances give the normal-stress jump across an interface 
with constant surface tension T, and zero tangential shear stress, respectively. Here 
n is the unit outward normal vector to the interface, 

n =  ( -h, ,  1, -h,)( i+h;+h:)- i ,  (2.9) 
t ,  and t ,  are orthogonal unit tangent vectors 

t ,  = (0, h,, 1) (1 + ht)-i, 

to = n x t,, 

(2.10) 

(2.11) 

and H is the mean curvature of the interface, 

2H = [h,,(l +h~)-2h,h,h,,+hZ,(l +h:)] (1 +h:+h:)-j. (2.12) 

There are boundary conditions appropriate to the solid-liquid interface. Dussan V. 
& Davis (1974) have shown that the no slip condition ut = 0 on y = 0, together with 
the movement of the contact line result in a multi-valued velocity field at the contact 
line. This corresponds to a non-integrable stress singularity giving an unbounded 
force at the contact line. This theoretically unreasonable result can be relieved by 
allowing perfect slip on the fluid-solid interface near the contact line. We follow 
Greenspan (1978) and pose a slip model:? 

a a 
u = %uy, v = 0, w = S I ~ r  on y = 0. (2.13a, b, c) 

The liquid is allowed to slip over the solid plate a t  a speed directly proportional to 
the shear. We choose a to be a numerically small constant so that the magnitude a / h  
of the slip, is significant only near the contact line where h = 0. 

There are boundary conditions at the contact lines. Since the contact-line positions, 
given by z = A ( z ,  t )  and z = -B(z ,  t )  are themselves unknown, we must pose 
conditions on the motion of these lines. 

First, there are the conditions of contact, 

h = O  a t z = A ,  ( 2 . 1 4 ~ )  

h = O  atz=-B. (2.14b) 
t One should really allow slip only normal to the contact line. The model (2.13) results in an 

O(a) slip along the rivulet axis, which, though non-zero, is small. We choose form (2.13) for 
convenience. 
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Second the velocity field at the contact lines is assumed to be bounded. This 
condition is implicit in the models of moving contact lines considered to date (e.g. 
Greenspan 1978; Hocking 1983; Dussan V. & Chow 1983). 

Third, the contact anglet depends on the contact-line speed. We define the contact 
angle 8 such that its tangent is the slope of the interface at the contact line in the 
direction Y normal to the contact line. Thus, 

tan8, = -Vh.v, = -h,(A;+l)f at z = A, (2.15~)  

tan8, = -Vh.v, = h,(B;+l)f at z = -B. (2.15b) 

We consider contact lines that exhibit no contact-angle hysteresis. For simplicity 
only we consider a piecewise linear model, namely 

(2.16) 

Equation (2.16) possesses two special cases. (i) If G‘(0)+00, then Uc,+O and the 
contact line is stationary. Thus, forjhed contact lines, A and B are time-independent. 
(ii) If G ( O ) + O ,  then O+q5 for all time and the dynamic angle equals the static angle 
always. This is the$xed-contact-angle case. Generally, 0 < al(0) < 00 and we have 
smooth contact-angle variation. We also note here an equivalent form for the kinematic 
boundary condition (2.5) which follows from integrating the continuity equation 
across the thickness of the rivulet 

h,+$I:udy+i[wdy = O .  

This form will be convenient for the linear stability analysis to follow. 

(2.17) 

3. scaling 
We follow Weiland BE Davis (1981) and scale all variables for the analysis of long 

waves with wavelength h on shallow rivulets of width 2L. This analysis will then 
apply to rivulets with small contact angles. If d is the maximum height of the rivulet, 
then we have two small parameters, the wavenumber k, 

d and the aspect ratio 6, 
8 = T ; .  

Wd= Us=---, 

PUS 
P S = d ’  

We define the velocity scale Us 

P 
the pressure scales pa, 

and the timescale t,, 
d 

t s = - .  
us 

(3.3~) 

(3.3b) 

(3.3c) 

The angle B would depend on speed if attachment or detachment kinetics of the liquid from 
the solid has timeacales comparable to those of the flow. Ngan & Dussan V. (1982) observe BApp, 
which coincides with Bfor small speeds, that show variations with speed. Hocking (1983) conjectures 
that (in the absence of kinetic effects) B would be constant. 
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The scaled quantities, denoted by upper-case letters, are as follows : 
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The scaling gives rise to the following non-dimensional groups : 

K = a/d2 ) 
where R is the Reynolds number, K is the slip coefficient and B, is a Bond number 
based on the height of the rivulet. In  addition it is convenient to introduce the Bond 
number BL based on the width of the rivulet 

The scaled system can be obtained by direct substitution into (2.1), (2.2), (2.5)-(2.8) 
and (2.13)-(2.16). 

4. Basic state 
We consider a steady, unidirectional, fully developed flow down the plate in the 

X-direction; see Towel1 & Rothfeld (1966), Allen & Biggin (1974). Under these 
assumptions the rivulet flow satisfies 

Uyy + S2Uzz = - 1,  (4.1 a)  
Fy = Fz = 0, (4.1 b,  c) 

- 6 2  
- P  = -Hzz(l+S2H2,)-f on Y = H, (4.2) 

Uy-tS20z Hz = 0 on Y = H, (4.3) 

Bd 

K -  
U=-uy H on Y = O .  (4.4) 

Since the fluid wets the solid on a strip of constant width 

- 1  < z < 1, (4.5) 
and since all flow quantities are X-independent, we have conditions at the contact 

(4.6) 
line : 

H = O  a t Z = + l ,  

6Hz=Ttanq5 a t Z = f l .  (4.7) 

H = l  a t Z = O .  (4.8) 

Consistent with the definition of d, we pose the normalization condition 
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From (4.1 b, c) we conclude that the pressure is a constant and thus (4.2) tells us that 
the interface forms a cylindrical meniscus whose cross-section is the arc of a circle. 
We shall seek approximations to O( Y, 2) and H ( 2 )  for the case of shallow, wide 
rivulets, i.e. S 4 1. Assuming that P / B ,  = 1/B, = 0(1) as 6+0, Weiland & Davis 
(1981) h d  that 

U = [H,  Y-4 ye + K] + 6e [t yz + Y( - H i  + 5z2H0) + K(  - H ,  + 4291 + 0(61), (4.9a) 

P = BE’(2 -282) +0(61), (4.9c) 

= s ( 2 + 3 9 + 0 ( ~ 5 ) ,  (4.9d) 

H = H ,  + S 2 2 2 I q  + 0(61), (4.9b) 

where H ,  = 1 - 2 2 .  (4.9e) 

The terms proportional to K in (4.9a) should really be discarded since they arise from 
our allowance of slip along the rivulet. See the footnote on p. 4. 

We note that S+O is formally a singular perturbation of (4 .1~) .  However, forms 
(4.9) do satisfy all the boundary conditions and the expansions are uniformly valid 
on the domain - 1 < 2 < 1. Thus, a uniformly valid approximation is obtained by 
only using the ‘outer’ solution. This circumstance, a common occurrence when using 
lubrication theory, has been clarified by Young & Davis (1985). 

5. Linear theory: general 
We disturb the basic state (4.9) as follows: 

(U, V ,  W ,  P, h, A ,  B )  = (U, O , O ,  P, H, 1, l)+(u’, v’, w’,p’, h’, A’, B’), (5.1) 

substitute these into the scaled version of the governing system of $2 and linearize 
in primed quantities. For each dependent variable $‘ we introduce normal modes as 

(5.2) 
follows : 

(5.3) 
where the complex wave speed c, 

= cR + icI, 

determines the stability characteristics of the basic state. The governing normal-mode 
system is as follows: 

(5.44 

(5.4b) 

(5.4c) 

iu+vy+wz = 0, (5.4d) 

w = i(8-c)h+wHz on Y = H, (5.4e) 

$’(X, Y ,  2, 2’) = $( Y ,  2) ei(X-cT), 

kR[i(U-c)+ ryv+ Uzw] = -ip-k2u+uYy+PuZZ, 

ik3R( U- c) w = - PDp,+ k2{ - k2w + wyy + Sawzz}, 

ik3R( g- c) v = -py + k2{ - k2v + vyy + Pv,,}, 

subject to boundary conditions on the interface 

-p  + 2k2{vy + P w Z  H2, - H Z [ P V Z  + wy]} N-’ 

= k{$hN-1+-[N-3hz]z 1 on Y = H, (5.4f) 
B L  
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and conditions on the solid 
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v = o  on Y = 0, 

K w = - w y  
H 

on Y = O ,  

(5.4i) 

(5.4j) 

(5.4k) 

and conditions. at the contact lines : 
(1) Contact condition 

h + H z A  = 0, 2 = 1,  

h - H Z B = O ,  Z = - l ,  (5.42) 

(2) Contact-angle-varies-with-speed condition 

where 
N = (1  + PH2,)t. 

(5.4m) 

(5.4n) 

(3) Bounded-velocity condition. 
The scaled system (5.4) contains the two small parameters k and S. In order to use 

an asymptotic method for analysis of this system we determine the order of 8 with 
respect to k. First of all, note that if 6 = 0, then the dimensional width L = m, say, 
so that we have a rivulet which is infinitely wide in the cross-stream direction, i.e. 
a film flow. There are no contact lines, the edge conditions there are lost. Since we 
scale the dimensional cross-stream coordinate z on L, theslimit S+O in system (5.4) 
is a singular perturbation..Thus, we restrict taking this limit in any results we obtain. 
In  contrast to Weiland & Davis (1981)  we shall pose the class of problems such that 

where D is a constant, 
S2 = Dk8, 

D = 0 ( 1 ) ,  

(5.5a) 

(5.5b) 

and B > 0. We take s 8 0, so that we can simplify the system to ordinary differential 
equations for the velocity components. 

After choosing the value of s we then consider the effects of surface tension. From 
the normal stress boundary condition (5.4 f )  we see that the dominant surface tension 
terms are 

and 

( 5 . 6 ~ )  

(5.6b) 

where the former gives a measure of longitudinal curvature effects while the latter 
gives transverse curvature effects. Clearly, from relations (5.6) when 0 < s < 2, 

1 k2 
-9-,  
BL Bd 

(5.7) 

and when s > 2, 
k2 1 -9- 
Bd BL 
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The two effects balance when s = 2. Therefore, in order to retain the appropriate 
surface tension effect, we take 

1 
- = O(1) (0 < 8 < 2), 
BL 

and 

= O(1) (8 2 2). 
k2 - 1 -- 
B d - 5  

( 5 . 9 4  

(5:9b) 

This is reasonable from a physical standpoint since the Bond number Bd is small 
(Bd z 0.14 for a water rivulet with a height of 1 mm). Krantz & Goren (1970) retain 
these terms (5.9b) in their film flow analysis while Weiland & Davis (1981) use (5 .9~)  
in their analysis. 

We shall now discuss the cam s = t in detail. In $8 we discuss the results for larger 
values of 8 .  

6. Linear theory: ‘narrow’ rivulets with 8 = 
We set s = 4 and write for each dependent variable @ and for complex eigenvalue c, 

The basic state (4.9) is known in powers of SB so that we also have 

(6.2) 
U =  Uo+Dd Ul+O(D2k),\ 

H = Ho+DkfHl+O(D2k) . )  

When forms (6.1) and (6.2) are substituted into system (5.4), we obtain a t  order 
unity : 

POY = 0, (6.3b) 

DPOZ = 0, ( 6 . 3 ~ )  

iu, + voy + woz = 0 (6.3d) 

210 = -~~u,-co)+woHo, ( Y  = Ho),  (6.3e) 

(6.3 9 )  

(6.3 h)  

(6.3i) 

K 
wo = - Woy ( Y  = 01, (6.3k) 

Hrl 
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with contact-line conditions 

h,+HoZA0 = 0 (2 = I ) ,  

ho-HoZBo = 0 (2 = - I ) ,  

( 6 . 4 ~ )  

(6.4b) 

h , , - ~ h ,  = 0 (2 = f 1 ) .  ( 6 . 4 ~ )  
Ho, 

At order ki we have 
U l Y Y  - ip, = - DUOZZ, ( 6 . 5 ~ )  

P ly  = 0, (6.5b) 

DP,, = 0, ( 6 . 5 ~ )  

(6.5d) iu, + vly + wlZ = 0, 

v1 + Dvoy H ,  = - ic, h,-i( U,-c,) h, + iDU, h,+ w1 H,,+ Dw, H,, 

+ iUoy DH, h, + DwOy H ,  H,, ( Y = H,), (6.5e) 

-p,  = 0 ( Y  = H,), ( 6 5 f  1 
2DHo~[Vou-wozI-iDho[UoyHo,+ Uozl+w1y+woyy DH1 

-DH2,zwoy+D~,Z = 0 ( Y  = H,), (6.59) 

u1 Y + UOY Y DHl - DHOZ uoz - DhOZ G Z  + h, VOY Y + h, D 01 y y 

+ho UoyyyDH1-DhoHoZ UOzy = 0 ( Y =  H,), (6.5h) 

K h h -  h K h -  ul=- [ u l y - ~ D ~ l y - - - ' U , y + ~ D H ,  ~ o y ] - - D H , [ u o y - ~ U o y ]  ( Y  = 0) ,  
HO HO HO G H2, HO 

(6.5i) 

v , = o  ( Y = O ) ,  (6.W) 
K K 

~1 = -wly-- DH,  wOy ( Y  = 0) ,  (6.5k) 
HO Hi 

with contact-line conditions 

( 6 . 6 ~ )  

(6.6b) 

D - ic, h, 
(2 = f 1 ) .  ( 6 . 6 ~ )  [h HOZZ'~ D H ~ Z Z ~ O + H , , , D H  h 

1z ,] = H,, 
U,G(O)  lZ Ho, Hoz H2,Z 

We shall need only some of the equations at orders k, d, and k2. At order k these are 

uzyy - ip, + Du,,, = R[ - i (  0, -co) u, + Ooy vo + Uoz w,], ( 6 . 7 ~ )  

PZY = 09 (6.7b) 

DP,, = 0, ( 6 . 7 ~ )  

-P, = -h,zz ( Y  = H J ,  (6.7d) 
1 

BL 



h, D u l y  + h, D2Hl gly h, D2H2 goy + K h0 u 2 = -  u 
HO [ 2Y-KD2'2YY- Ho HO & 

with contact-line conditions 

~ ~ + H ~ z A ~ + D H ~ Z A ~ + D ~ H ~ Z A ,  = O (2 = I ) ,  ( 6 . 8 ~ )  

h2-HoZB2-DH1ZBl-D2H2Z Bo = 0 (2 = - l ) ,  (6%) 

In writing down (6.7d) we have msumed, as discussed above, that 

and 
1 
- = O(1) as k+O. 
BL 

At order k! we use 
P3Y = 0, 

-DP,z+W,yy = 0, 

(6.10) 

( 6 . 1 1 ~ )  

(6.11 b )  

And finally at order k2 we use 

-Pay +"OYY = 0, ( 6 . 1 2 ~ )  

(6.12b) - DPrz + WlYY + DWOZZ = 0, 
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The above system of equations are nearly identical to those in Weiland & Davis 
(1981). The difference is that we retain the kinematic condition in the pointwise forms 
(6.3e) and (6.5e). This is essential to completing the analysis. 

6.1. Fixed contact lines 
The contact lines become fixed when G ( O ) +  00 as seen from relation (5.4m) since 

h = O  a t Z = & l ,  (6.13) 

which gives from relation (5.41) that 

A = B = O .  (6.14) 

Given that linear stability theory represents a homogeneous eigenvalue problem, 

h = l  a t Z = O ,  (6.15) 

which determines the arbitrary multiplicative constant associated with the 
eigenfunction. 

Since the contact lines are stationary, we can set the slip coefficient K = 0. 

we pose a normalization condition, namely 

To solve this system we consider (6.3b, c , f )  and find that 

p, = 0. 

p, = 0. 
Similarly, (6.5b, c , f )  give 

(6.16) 

(6.17) 

Again, (6.7b, c) give that p2 is constant; (6.7d) and (6.13) then give that 

h, = @LP2[1 -z21, (6.18) 

and using the normalization condition (6.15) we find that 

and 
p2 = 2Bz1 

h, = 1 - 2 2 .  

(6.19) 

(6.20) 

The streamwise velocity u, is then obtained from ( 6 . 3 ~ )  subject to conditions (6.3h) 
and (6.3i). We find that 

u, = h, Y .  (6.21) 

Next, since (6.11a) gives p, independent of Y, then p, is given for all Y by (6.11~).  
However, at this point h, is still unknown. In  order to determine k, we first obtain 
the transverse velocity w, from (6.11 b) subject to conditions (6.3g) and (6.3k): 

W, = Dp,, Y(+ Y - Ho).  (6.22) 

Then, using (6.3d) and (6.3j), we solve for vo to obtain 

vo = -+ih, Ya-iDpszz P++DP,~ ,  PH,++Dp,, PH,,. (6.23) 

We now substitute (6.21), (6.22) and (6.23) into the kinematic condition (6.3e) and 
rewrite in terms of p, to obtain: 

WP,z %lZ = i m  -co) h,. (6.24) 

Now, since p, is proportional to hlZZ by relation (6.11c), then (6.24) is a non- 
homogeneous fourth-order differential equation for h, in the transverse variable 2. 
The general solution will contain four integration constants plus the unknown 
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eigenvalue c,. Thus we need five boundary conditions. Three of them are given by 
(6.13) and (6.15). The other two come from the bounded-velocity condition. If we 
integrate (6.24) and substitute forp,, in (6.22), we find that the condition of bounded 
velocity at the contact lines Z = f 1 requires that the constant of integration be set 
equal to zero; this determines co, 

C, = 3 = 0.686. (6.25) 

co is the phase speed of the small-amplitude waves and its magnitude is twice the 
average surface speed of the brtsic-state rivulet (Weiland & Davis 1981). 

This agrees with the result of Weiland & Davis (1981) who require only a 
satisfaction of the kinematic condition in integrated form. However, Weiland & Davis 
are unable to determine h, since the kinematic condition is not applied pointwise. 

We solve (6.24) using (6.13) and (6.15) to obtain 

h, = 3DZ2( 1 - 2,) - iD-l B, Z2[0.339 + &Z2] + iD-lB, 

x { -0.129(l-Z2) log ( I  -zZ) +0.257 [(l +Z) log (1 +Z) + (1 -2) log (1 -Z)]). 

(6.26) 

The procedure to determine the eigenvalue corrections follows similarly. We see 
that (6 .12~)  subject to condition (6.12~) allows us to determine p ,  in terms of the 
unknown h,. We solve for the velocity components u,, v,, and w,, and substitute them 
into the kinematic condition (6.5e). As before, this results in a fourth-order 
differential equation in the transverse variable 2. The boundary conditions are 
(6.13), (6.15) and the bounded-velocity condition. Upon integration of this equation 
and the requiring of bounded velocities, we obtain the eigenvalue correction 

c1 = clR+iclI = -0.538D-O.0033iD-'BL. (6.27) 

Stability is determined through the sign of cI. A t  this point we have only the 
leading-order term clI and this contains no kinematic terms. From (6.7a) we see that 
we need to go to order k in order to get them. The algebra becomes very complicated 
at  this order. Since we only want the correction cZI, we shall simplify matters as 
follows. First of all, rather than determining u,, v,, and w,, and then using the 
kinematic condition to obtain a differential equation for h,, which we would integrate 
once and apply the bounded-velocity condition to obtain cz, we shall use a method 
based upon (2.17). The order4 form, obtained by integrating (2.17) with respect to 
2, linearizing, and then evaluating the resulting expression at the contact lines gives 
the mass flux through the contact line as follows: 

where b is a constant of integration. If the velocity is bounded, then the mass-flux 
vanishes and the right-hand side of (6.28) must be zero. The resulting equation has 
four unknowns, u,, h,, c,, and b. However, we can solve for u2 and h, from previous 
work and thus, since form (6.28) applies at both Z = + 1, we have two equations to 
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determine the two unknowns c, and b. To make matters even simpler, we solve only 
for cZI and thus need only to determine the imaginary parts of u2 and h,. Using this 
simplification, we solve for cgI and Im(b) from the following two equations obtained 
from (6.28): 

J'[D~,(H,, f 1) ~ h , )  + U,(H,, f 1) Im(h,) -cZI h,-Im(c, h,) 

-c,Im(h,)+DHoH,Im(h,)+ Im(u,)dY dZ+Im(b) = 0. (6.29) 1 
To get Im(h2) we solve the fourth-order differential equation for h, using the 
contact-line conditions (6.13), 6.15) and bounded velocities. Then, to get Im(u,), we 
solve ( 6 . 7 ~ )  subject to conditions (6.7e) and (6 .7f) .  We then substitute these into 
(6.29) together with all the other known quantities and find that Im(b) = 0 and 

c Z I  = 0.031[R- 14.7BL1+0.483B,]. (6.30) 

In summary, for the case of fixed, straight contact lines and 

1 3 ~  = Dk:, (6.31) 

we have the phase speed for linearized waves 
I 

CR = 0.686-0.538Dd+O(k). (6.32) 

These flat rivulets on vertical walls are stable to small, long-wave disturbances as long 
as cI < 0, where 

CI = -k:00.0033B,D-'+0.031k[R- 14.7B~'+0.483B,]+O(kg). (6.33) 

We note here that the term proportional to BE' in relation (6.33) represents the same 
surface-tension mechanism which stabilizes two-dimensional long waves in film flow. 
However, we see that the presence of the fixed contact lines adds an additional 
stabilizing mechanism proportional to B, = B,/Dkk Thus its effects are strongly felt 
when surface tension is small. 

6.2. Moving contact lines 
For the case of moving contact lines let us consider the contact line condition ( 5 . 4 ~ )  
in the form 

Hzzh - h 
h Z - - - - i c G , - ( l + G 2 H ~ )  ( Z = f l ) ,  

H z  H z  
where 

kU, G(0) 
6 2 .  G, = 

(6.34) 

(6.35) 

We shall assume that G, is an order unity parameter so that we can use the full 
contact-angle-versus-speed condition (6.34). Then by varying G,  through the range 

0 < G , < 0 0 ,  (6.36) 

which is equivalent to letting G(0) vary from 0 to 00, we shall be able to describe 
the contact-line motion from a fixed contact angle to a fixed contact-line regime. 
This of course will be done by keeping 62 fixed. However, it  is noted that one could 
also vary G, as in range (6.36) by letting 8, vary from 00 to 0. According to (3.2), 
this means that the rivulet becomes wider. In other words even though the contact 
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lines can move, the rivulet can be so wide that these effects are overwhelmed and 
the overall result is similar to that of a fixed contact-line case. That such an 
explanation is reasonable will become more apparent when we show that fixed- 
contact-line-rivulet behaviour appears to be the same as that of a film flow. 

The governing equations, boundary conditions, and normalization conditions for 
moving contact lines are those given in (6.3)-(6.12) and (6.15), except for conditions 
(6.4c), (6.6c), and (6 .8~) .  At orders 1, ki, and k these, respectively, become 

(6.37) A --=-ic Hozz ho h0 
OZ Hoz lH0z 

G - ( Z = + l ) ,  

h,z--- Hozz hl DHlZZ ho +Hozz DHlZ ho 
Hoz Hoz %Z 

=iBl --- cohl+cohoDH1z-cohoDHoz] (2 = kl ) ,  (6.38) [;:: Hoz e z  
H h DHizz hi + DHozz Hiz hi - D'Hazz ho D'Hizz Hiz ho h -me_ + 

az Hoz Hoz %Z Hoz %Z 

co h, DHIZ - co h, DaHiZ 

+ DaHoZz Hzzz ho - DaHoZz e z  ho 
&Z H9,Z 

cl ho DHlZ co h, +-- 
%z Hoz f c z  H 8 Z  

We now proceed exactly as before and again we fhd  

Po = p ,  = 0. (6.40) 

Next, (6.7b, c )  give that p ,  is a constant. We then determine the leading-order 
boundary perturbation h, from conditions (6.7d) and (6.41). We find, using the 
normalization condition (6.15), that 

h, = l-SZe, 
where 

1 =t iico G1 
- 1 ++co B, ' S =  

and 
2s 

p a = - .  
BL 

Note that as 0, + m, then S+ 1 80 that 

ho = 1 -Zz, 

(6.41) 

(6.42) 

(6.43) 

and p a  > 0 for fixed contact lines, and that as G1+O, S+- 1 so that 

h, = l+Ze, (6.45) 

and p ,  < 0 for fixed contact angles. This result is similar to that of Weiland & Davis 
(1981) except that they have an additional term a, 2 in their fixed contact angle result, 
where a, is an arbitrary constant. We too would get this result if we set B, = 0 in 
form (6.34). However, further analysis will show that we need a, = 0 in order to 
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0.653 

0.604 

COR 

0.555 

0.506 

0.457 
-3.0 -0.80 1.4 3.6 5.8 

log,, GI 
FIQURE 2. The phase speed cOR of the long-wave disturbances is plotted versus G, for various values 

of the slip coefficient ( K  = lo-*, The curves are indistinguishable. 

satisfy the bounded-velocity condition. In  addition we have extended the results of 
Weiland & Davis (1981) in (6.41) to describe the interface behaviouras the contact-line 
motion varies from fixed contact angle to fixed contact-lines. 

The contact condition ( 6 . 4 ~ ~ )  implies that the contact-line correction for each case is 

(6.46) 

In other words the contact lines are most mobile for the case of fixed contact angle 
and spread more slowly and through smaller distances as G, -+ 00. This is consistent 
with our defining G(0) as a quantity that measures the ability of a contact line to 
spread for a given liquid-solid system. 

The streamwise velocity u, is now obtained from ( 6 . 3 ~ )  subject to conditions (6.3h) 
and (6.3i) .  The slip coefficient K is taken different from zero for this case since 
contact-line motion occurs. This follows our discussion of the no slip condition in $2. 
Independent of the value of K ,  we still find 

uo = h, Y .  (6.47) 

Next, as before, p, is given exactly by condition ( 6 . 1 1 ~ )  and h, is still unknown. So 
we determine the transverse velocity w, from (6.1 1 b) subject to conditions (6.38) and 
(6.3k).  We obtain 

W, = D P , ~ ( $  YZ - H,  Y - K ) .  (6.48) 

Then, using conditions (6.3d) and (6.3j) ,  we solve for vo and find 

vo = -$ih, Y Z - ~ D P , ~ ~  Y ~ + ? ~ D P , ~ ~  Y2H,+$Dp,, YZH,z+~Dp,zz Y .  (6.49) 



Rivulet instabilities 17 

h3,, GI 
FIGURE 3. The coefficient coI is plotted versus GI for various values of the slip coefficient 

(K = The curvea are indistinguishable. 

We now substitute forms (6.47), (6.48), and (6.49) into the kinematic condition (6.3e). 
As before, this results in a fourth-order differential equation in the transverse variable 
2 for h,. We have 

(6.50) 

where p ,  is proportional to hIZz. This time the four integration constants and 
unknown eigenvalue co are determined through the normalization condition (6.15), 
the moving-contact-line conditions (6.38) and the bounded-velocity condition. After 
one integration of (6.60) we apply the boundedness condition to (6.48) and determine 
the integration constant to be zero and find the leading-order eigenvalue 

W P B Z  4 + KDPSZ H01z = ir - co ho + ho el, 

8(7-S) 
35(3 - S )  + K .  

co = (6.51) 

When Q, + 0 and thus S+- 1 we have 

co = E+K = 0 .457+~ ,  (6.52) 

which is the phase speed for small amplitude waves on rivulets with fixed contact 
angles. This result agrees with that of Weiland & Davis (1981). At the other extreme, 
Gl+ 00, we recover condition (6.25). Figures 2 and 3 show how cOR and coI vary with 
G, and table 1 gives numerical values. Either from the table or from substituting S 
into relation (6.51) and solving for co, one sees that t  coI varies as Q, for small Q, and 
as l/G, for large GI. In addition it is negative for all Q,. Thus the contact- 
angle-increasing-with-contact-line-speed effect is always stabilizing to the system. 
This too agrees with earlier findings of Davis (1980). 

We note that the form of (6.51) and the value of cOR in table 1 suggest that we 

t The second root of the quadratic equation gives a strongly damped mode. 
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require the slip coefficient K to be so small that the phase speed is only slightly 
affected. This is reasonable since we want the effects of slip to be local to the contact 
lines. Therefore, we restrict K to be less than 0.01 so that cOR varies less than 3 yo aa 
K varies from zero to 0.01. Greenspan (1978) also chooses the value 0.01 an upper 
bound for his slip coefficient. Table 1 (a) gives results for K = 0.001. In comparison 
with table 1 (a), where K = we see that cOR, and coI, vary negligibly as shown 
in figures 2 and 3. 

Now after one integration of (6.50) and the applying of the boundedness condition 
we have the following differential equation to solve for h, : 

1, (6.53) 
(1 -co) Z- (t+ (9S/35)) 2, ++SZ5 

;( 1 - 2 2 ) 2 +  K 
h , Z Z z  = - 72502 - - 

D 

subject to conditions (6.15) and (6.38). At this point, though, c, in (6.38) is unknown. 
However, we can in principle integrate (6.53) three times and apply the boundary 
conditions (6.15) and (6.38) to determine h, in terms of c,. 

Upon completing this integration we find that restrictions must be placed upon 
the slip coefficient K in order that our asymptotic expansions be uniformly valid. In 
particular we need that 

max (e-7, a) 4 K < 0.01, (6.54) 
where 

DS 
y = - ,  

Bd 

a = y&y. 
(6.55) 

(6.56) 

Here /3 is a coefficient depending upon G, such that /3 decreases monotonically from 
a value of at  GI = 0 to 3(3~)f  at G, = co. See Appendix A for details. For values 
of Bd near 0.05 we find that restriction (6.54) is satisfied for 

10-8 < K .C 10-3. (6.57) 

Thus we place the lower bound restriction on the slip coefficient K in order that our 
expressions for pressure, curvature, contact angle, and interface shape are mathe- 
matically well-defined quantities, and we place the upper bound restriction in order 
that slip effects be confined to the contact-line region. 

Now, as before, solving ( 6 . 1 2 ~ )  subject to condition (6 .12~)  allows us to determine 
p ,  in terms of the unknown h2. We then solve for the velocity components u,, w,, and 
w,, and substitute them into the kinematic condition (6.5e). This results in a 
fourth-order differential equation in the transverse variable 2 for h,. The boundary 
conditions are (6.15), (6.39) and the bounded-velocity condition. This equation is 
solved numerically using the computer package SUPORT; see Scott & Watts (1977). 
We thus determine the eigenvalue correction 

c1 = [c2R BL + C 3 R l +  i[c2 B L  + CJ, (6.58) 

where the C, and CfR are numerical coefficients. Table 1 gives values for these as G, 
varies from the fixed-contact-angle to the fixed-contact-line regime. 

The stability criterion at this stage is 

cI = cOI + ki [C, B, + C,] + O( k) , (6.59) 

and so as before we need to go to higher order to obtain kinematic terms. Thus we 
shall use the short cut described in obtaining (6.28) in order to determine c,. First 
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we solve for u, and h,. From (6.39) we notice that h, depends on c, just as h, depended 
on c,. The analysis for separating this dependence follows the same as that for h,. 

As before we set (6.28) equal to zero. The integrations in (6.28) are done numerically 
using Simpson's rule. Satisfying the two conditions stated in (6.28), we obtain the 
eigenvalue correction cZI. We find that 

(6.60) 

where the C, are numerical coefficients depending on G,. I n  table 1 numerical values 
are given for these coefficients. The contribution from C, is negligible compared to 
those of coI and kiC3 for small k and thus is not listed. 

In  summary for the case of rivulets with moving contact lines and widths related 
to wavenumber as in relation (6.31) we have the disturbance phaae speed 

(6.61) 

and flat rivulets on vertical walls being stable to small long-wave disturbances as long 
as cI < 0, where 

CR = + d [CaR B, + C3R1 + o(k) ,  

CI = c ~ I + ~ ~ [ C , B L + C ~ ] + ~ [ C ~ R + C ~ B ~ ~ + C ~ B ~ + C , ~ ~ ] + O ( ~ ~ ) ,  (6.62) 

with all coefficients listed in table 1. 
We note that B, = BL Dd is chosen small enough in (6.62) so that restriction (6.54) 

is satisfied for K = and K = lo-,. We could allow larger values for Bd when 
K = but choose not to for comparison purposes. Table 1 shows that the neutral 
curves are nearly indistinguishable for a, greater than 8.2. We note here that if we 
were to continue the analysis to obtain corrections to relation (6.62) at order d, an 
examination of (5.4f) reveals that streamwise curvature effects proportional to 
C, d Bil = C, 8,' would appear. 

7. Results 
We now consider the expression (6.62) for the growth rate cI. The signs of the 

coefficients C, and coI determine whether the terms are stabilizing ( - ) or destabilizing 
( + ) to the system. We note that cOI + ki C, and (ki C, + kC,) B, are always negative 
so that the main prediction is that of stability. However, C, and C, change sign and, 
consistent with the perturbation nature of result (6.62), the system can be made less 
stable. However, if we were to push (6.62) beyond its expected range of validity by 
considering larger values of k, then cI may become positive, implying instability. Such 
information can be suggeative in understanding the physical mechanisms present in 
the system. 

For the latter reason we consider the following three rivulet flow regimes: 
0 < a, < 7.4, 7.4 < G, < 8.4, and 8.4 d 0, < 00. In the first region, 0 < G, < 7.4, G, 
is small enough that we are describing 'narrow rivulets with fixed contact angle and 
very mobile contact lines. Here C, < 0 and C, > 0 so that surface-tension effects are 
destabilizing to the system whereas flow effects are stabilizing. Such a situation may 
lead to a capillary instability in the rivulet, resulting in the rivulet breaking up into 
drops in much the same way as a capillary jet. This behaviour waa seen by Culkin 
(1981) in his rivulet experiments. In  figure 4 we plot the expression (6.62) for cI versus 
the wavenumber k. The dashed portions of the curve denote the regions where the 
asymptotic expansion (0.62) may be breaking down since the O(k)  terms are becoming 
comparable to those of O@).  Figure 4 shows that as the mobility of the contact lines 
decreases or aa the rivulet becomes wider (both cases corresponding to larger GI) the 



22 

5.0 

G. W .  Young and S.  H .  Davis 

- 
0 

0.  ‘ 
0 ’  

G, = co 0’ ‘ 
/ 0  

0’ ’ 

- 5.0 

5 
X 
G 

- 10.0 

- 15.0 
1 .o 2.0 

k x  10 

FIQURE 4. Plot of the growth rate expression (6.62) using values from table 1 describing a ‘narrow’ 
rivulet with very mobile contact liqes (G, = 0.002) and a wider rivulet with less mobile contact lines 
(G, = 7.0). Here R = 15.0 and B,  = 0.75. The dashed portions denote where the asymptotic 
expansion (6.62) may no longer be valid. 
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FIGURE 6. A comparison of the growth rate expressions for E film flow with a rivulet flow. The results 
found by Weiland &, Davis (1981) are nearly indistinguishable from our fixed contact line result. 
Here R = 2.0 and B, = 1.0. 

region of stability increases; it is more difficult for the contact lines to approach each 
other and pinch the rivulet. 

In the second region, 7.4 < G, < 8.4, both C, and C, are negative. Thus flow effects 
and capillary effects are both stabilizing to the system. Here cI < 0 and it appears 
for rivulets of width and contact-line mobility characterized by G, in the above 
region, that the basic-state straight rivulet is stable to small amplitude disturbances. 
J. Kern (1975 unpublished) and Culkin (1981) also find experimentally a region of 
flow rates within which the straight rivulet is stable to even large amplitude 
disturbances. 

Finally, in the third region, 8.4 G G, < 00, C, > 0 and C, < 0 so that flow effects 
are destabilizing whereas capillary effects are stabilizing. This behaviour more closely 
resembles that of a film flow. Since G, is large in the above region, then we are 
describing very wide rivulets with rather immobile or even fixed contact lines. In  
figure 6 we plot the expression (6.62) for a fixed contact-line rivulet and for a less-wide 
rivulet with rather immobile contact lines (G, = 2000). It is seen that the narrower 
rivulet with mobile contact lines is more stable, implying that mobility may have 
a stabilizing effect on film flow instability. 

In figures 6 to  8 we compare the growth rate expressions cI for small amplitude, 
two-dimensional, long-wave disturbances in film flow, given by Yih (1963), and the 
expression found by Weiland & Davis (1981) for fixed contact-line rivulet instabilities 
with the results we show in figure 5. Yih (1963) gives (in our notation) 

CI = &k(B-!pil) ,  (7.1) 

CI = 0.031(B- 14.8BE'). (7.2) 

while Weiland & Davis (1981) find that 

In figure 6 for R = 2.0 and BL = 1 .O, all four expressions predict stability. In  figure 7 
for R = 5.0 and BL = 1.0, only the film flow is predicted to be unstable. This is 
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FIGURE 7. A comparison of the growth rate expressions for a film flow with a rivulet flow. The results 
found by Weiland & Davis (1981) are nearly indistinguishable from our fixed contact line result. 
Here R = 5.0 and B,  = 1.0. 
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FIGURE 8. A comparison of the growth rate expressions for a film flow with a rivulet flow. Here 
R = 15.0 and B, = 1.0. The dashed portions denote where the asymptotic expansion (6.62) may 
no longer be valid. 
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because the stabilizing capillary effects are stronger in rivulets due to the presence 
of the curved meniscus. In  figure 8 for R = 15.0 and B, = 1.0 all four expressions 
predict instability though the k is large enough that our asymptotics may no longer 
be valid. We see that the presence of the contact lines makes the rivulet stable to 
small amplitude disturbances at very small wavenumber. In this region film flow is 
unstable and Weiland & Davis (1981) predict rivulet instability with k = 0 being a 
neutrally stable state. 

8. Discussion and summary 
We consider the flow of a rivulet down a vertical wall. The ratio S of the maximum 

rivulet height to the maximum half width of the rivulet is assumed to be small. We 
allow slip between the liquid and the solid surface at the contact line using a Navier 
slip model with a slip coefficient inversely proportional to the height of the interface. 
We consider long-wave disturbances having wavenumber k. When S 4 1 and k Q 1, 
we examine a linear stability analysis of the basic straight rivulet by assuming 
Se = O(k8).  This family of problems divides into three categories: 

ka 
(iii) 8 4  k ;  8 )  2 +-= 0(1) 

B, 
wide. 

Here the parameter 8 measures the relative degree of the width of the flat, wide 
rivulet. In  case (i) the rivulet is narrow enough that cross-stream curvature effects 
dominate streamwise curvature effects. In  case (ii) the two effects are comparable, 
while in case (iii) streamwise curvature effects are the more important. For the 
limiting case, s-+00, we obtain results for an infinitely wide rivulet, which is 
equivalent to a two-dimensional film flow. In  fact for s > 2, the fdm-flow approxi- 
mation is valid (Young 1985). Long-wave disturbances are realized through the usual 
normal-mode assumption. Hysteresis is not included in the analysis since it cannot 
be retained upon linearization (Davis 1980). Therefore we allow the contact angle 6 
to be a linear function of the contact-line speed UcL, namely 6 = q5 + G ( 0 )  UcL. The 
static angle q5 measures the weitability of the solid and the slope G(0) measures the 
mobility of the contact lines. When G(0) is small, the contact lines are very mobile 
and G(0) + O  gives the fixed-contact-angle case. When G ( 0 )  is large, the contact lines 
are very immobile and G(0) -+ 00 gives the fixed-contact-line case. In  our formulation 
we introduce the parameter GI in (6.35), proportional to G’(O), to measure the 
importance of the rivulet width and the mobility of the contact lines. We see that 
large G, can describe either a very wide rivulet or a rivulet with almost fixed contact 
lines. Likewise, small G, corresponds to a narrower rivulet or one with very mobile 
contact lines. 

We perform an asymptotic analysis of the linearized disturbance equations. For 
the case of fixed contact lines, all results can be obtained analytically. For the case 
of mobile contact lines we need to integrate some quantities numerically. We use the 
asymptotic results as a check on the numerical results. 



26 G. W. Young and S. H .  Davis 

Our results can best be summarized through the expression (6.62) for the growth 
rate cI. This expression for the case s = i can be simplified by neglecting the terms 
of orders k BL and k B i .  The result is as follows : 

(8.1) 

(8.2) 

cI = C,  + d [C, BL + C,] + k[C4 R + C, Bzl] + ki C, 

cI = C,  +C,  B, + d C,  + k[C4 R+C, BE'] + d C,  &I, 

or equivalently 

where C,  = coI. Here C,  to C, are functions depending strongly upon G, and weakly 
upon the slip coefficient K .  B, is a Bond number based upon the maximum height 
of the rivulet. B, is a Bond number based upon the maximum half-width of the 
rivulet, and R is the Reynolds number. Stability is obtained when cI < 0. We have 
shown that cI is composed of four contributions: 

1.  C , + k W ,  +- contact-angle effects; 

2. C, BE', C, &1 

3.  C2BL + contact-line effects; 

4. C4R +flow effects. 

C,  to C,  depend weakly upon the amount of slip between the liquid and the solid 
at  the contact line. On one hand, K should be small enough that the bulk flow is 
unaffected by the presence of slip near the contact lines. On the other hand, K should 
be large enough that the force singularity is appropriately removed. Our results show 
that it is the value of log K which emerges, as expected from the results by Hocking 
(1977, 1983), and Greenspan (1978) for other problems. Within the range of K 

to lo-,, we find that C ,  to C, are nearly independent of slip; presumably the same 
holds for C,. 

For the case s = 4, C, to C, are strongly dependent on the width of the rivulet and 
the mobility of the contact lines, both of which are characterized by G,. Equations 
(8.1) and (8.2) apply with the coefficients listed in table 1. If one wishes to eyamine 
rivulets that are much wider than the class considered, one must allow larger values 
of s. For 1 < s < 2 Young (1985) develops nonlinear evolution equations for h(z ,  z, t )  
and from these finds the equivalents of C,  to C,, as discussed below. Young (1985) 
also considers s 2 2 and finds that s = 2 is the asymptotic equivalent of the 'widest' 
rivulet-film flow. We now discuss the full range of G, and s, using in part results 
obtained by Young (1985). 

C ,  to C, are strongly dependent on s and G,, and thus are strongly dependent on 
the width of the rivulet and the mobility of the contact lines. We find the following 
behaviour for each : 

negative for all G,; proportional to G,, for small G, and proportional 
to Gyl for large G,; C,+kiC,+O as s+m. 
negative for all G, and such that IC,I decreases monotonically as 
C,+o~;C,+Oass+oo. 
negative for small G, and positive for large G,; C4 approaches the 
film-flow value as s + 00. 

positive for small G, and negative for large G, ; C5 approaches zero as 

approaches the film-flow value as s+m. (All results for C, are 
obtained through a consideration of a nonlinear evolution equation 
developed for wider rivulets, Young 1985.) 

+capillary effects ; 

C , + k ~ C ,  

c2 

c4 

c5 

'6 

S + W .  
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One must be cautious in taking the limit s+oo to get film flow since the presence 
of the contact lines and the contact-line boundary conditions make this a singular 
limit. 

We interpret the above results as follows for each of the effects (1)-(4). 
1. Contuct-angle effects. The contact angle increases with advancing contact-line 

speed or decreases with receding contact-line speed. This effect together with the 
contact-line effects is always stabilizing to the system. This effect weakens when the 
contact angle is nearly fixed and when the contact line is nearly fixed, since for both 
these cases the contact angle is nearly independent of the contact-line speed. This 
effect is also negligible for wide enough rivulets. 

2. Capillary effects. Corrugations of the interface produce pressure gradients driven 
by surface tension. These gradients are destabilizing, similar to thoge of the capillary 
instability of a jet, when the contact lines are very mobile, yet are stabilizing, similar 
to those of film flow, when the contact lines are fairly immobile. Likewise, as the 
rivulet widens, these effects become more like those in a film. Obviously, the presence 
of the solid surface distinguishes the film behaviour from the jet behaviour. Our 
results indicate that this difference can be overcome by increasing the mobility of 
the contact lines. 

3. Contact-line eflects. Regardless of the mobility G‘(0) of the contact lines, the 
presence of a contact line is always stabilizing. Wide rivulets are affected less by the 
presence of contact lines than the narrow ones. 

In essence the capillary-effect (Bil and B;l) terms describe the surface-tension 
effects away from the contact lines and the contact-line effect (BL) terms describe 
these effects near them. Rosenblat & Davis (1984) call the effects ‘capillary push’ 
and ‘contact-line pull ’, respectively. For the case of fixed contact angle the two effects 
oppose one another in that the contact lines move to squeeze fluid into thinner regions 
whereas capillary pressures pump it out of these regions. If capillary pressures win, 
then thick portions of the rivulet tend to swell. The contact angle in these portions 
becomes larger than the static angle and so the contact lines advance as shown in 
figure 9. The opposite occurs in the thinner portions; these sections shrink, the contact 
angle is smaller than the static angle, and so the contact lines recede. The result is 
that drops are pinched from the rivulet. On the other hand, for very immobile contact 
lines (large GI) both the ‘capillary push ’ and ‘contact-line ’ pull effects work to pump 
fluid into thinner regions. As shown in figure 9, thick portions shrink (thin portions 
swell) thus causing the contact angles to be less than (greater than) the static contact 
angle. Thus, the contact lines of the thicker portion recede and those of the thin, 
advance. The result is a stabilization of the rivulet to long-wave disturbances. 

4. Flow effects. Increasing the flow rate tends to stabilize the capillary instabilities 
for small a, and enhance the kinematic-wave instabilities for large G,. 

We conjecture that these effects combine to give the following rivulet flow regimes. 
When the rivulet is ‘narrow’ and the contact lines are mobile, so that Gl is small, 
the capillary effects can lead to a break-up instability. This instability can be 
overcome if the Reynolds number R is large enough. On the other hand when the 
contact lines are less mobile, so that G, is large, the capillary instability is suppressed 
because the contact lines can no longer move together and pinch off drops. Now the 
rivulet is susceptible only to a kinematic-wave instability which occurs at high flow 
rates. Here capillary effects oppose the instability while flow effects enhance it. 

When the rivulet is wide, independent of the mobility of the contact lines, i t  is 
susceptible only to a kinematic-wave instability. The rivulet resembles a film and the 
bulk f l ~ w  does not feel the motion of the contact lines. However, the presence of the 

2 BLY 176 
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Capillary break-up 

Stabilization of kinematic waves 

(b) \ / 

FIGURE 9. Contrtct line motion: (a) In the capillary break-up of a rivulet flow, fluid is pumped from 
thin regions into thick regions. The thick regions swell causing the contact lines to advance. The 
thin regions shrink causing the contact lines to recede; (a) When a rivulet is susceptible to a 
kinematic-wave instability, capillary pressures help to stabilize the rivulet by causing fluid to be 
pumped from thick regions into thin regions. 

contact lines is felt so that the rivulet is more stable to long-wave disturbances than 
is film flow. 

The effects of the contact lines are strongest as k +- 0. When GI is small, the capillary 
instabilities are weak for very long waves because the interface is nearly flat. Thus, 
unlike the jet, the rivulet flow is stable for very small wavenumbers. At the other 
extreme, for large GI, the presence of the contact lines gives a region of unconditional 
stability for a rivulet, in contrast to that of a film flow. 

We note that our analysis always predicts varicose instabilities and thus there is 
no prediction of rivulet meandering, a sinuous instability. The meandering rivulets 
observed by Culkin (1981) are rather narrow, 6 x 0.9. The resulting higher cross- 
stream curvature in his rivulets may lead to the side-to-side shimmering of the rivulet 
which he observes just before meandering takes place. This suggests the development 
of transverse waves across the rivulet width. We have not included hysteresis in our 
analysis. Since Culkin does not test any low hysteresis systems (because none were 
available), it has not been concluded that such rivulets can meander. If it were true 
that meandering depends upon the presence of hysteresis, then our obtaining only 
varicose instabilities rather than sinuous instabilities would be consistent with the 
no-hysteresis assumption. It may also be true that meandering is an instability from 
a disturbed state different from the straight rivulet and it represents a secondary 
instability. 
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Appendix A 
In order that our asymptotic expansions for pressure, curvature, contact angle, 

and interfacial shape are mathematically well defined, we require that restrictions 
be placed upon the slip coefficient K. Upon integrating (6.53) once we find that 

where 7 is a constant of integration. 
We now consider the pressure field 

P = k-+kt,, t(b-&S) lOg[(l-Z2)"3K] BL 2s 3i I 
obtained from (6.40), (6.43) and (A 1). We have neglected terms which are bounded 
at the contact lines a t  order ki. The constant of integration 7 is determined through 
the boundary conditions (6.15) and (6.39) in a later analysis and it is found that r 
is proportional to 

Now form (A la)  will be uniformly valid tu long aa 

S a log[(l-Z2)2+3K] Q -, 
BL 

which restricts the size of the slip coefficient so that 

K % exp [-yL 
where 

S DS 
Y=m=-, 

L Bd 
where we have used relation (6.9). In addition, we must also have 

so that we need 

In this expression /3 is given by 

/3 = [;-co-&s-+S(3K)q, (A 8) 
and in arriving a t  this expression we have used the principal value for the tan-' 9, 
-in < tan-'$ < in. 

2-2 
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We must satisfy conditions (A 4) and (A 7) simultaneously. From (A 5) we see that 
if the Bond number B, is small then y will be large so that e-Y is extremely small. 
Thus, we can pick B, small enough so that 

e-Y 4 Qi, (A 9) 
and therefore satisfying condition (A 7) automatically satisfies (A 4). 

at 
G, = 0, to + ( 3 ~ ) f  a t  G, = co. In  fact for G, > 14, /3 x 3-(3~)f. If we substitute this value 
for /3 into relation (A 7),  we obtain 

The relation (A 8) shows that /3 decreases monotonically from a value of 

$!D2S2 B Bi.  (A 10) 
Since table 1 shows that 52 is O(1) and D is also by definition 0(1), then relation 
(A 10) is easily satisfied for B, not too small. Thus, as long as G, > 14, then condition 
(A 7) is satisfied for extremely small values of K and condition (A 4) is the only (rather 
weak) restriction on K.  For example if B, = 0.1 and DS = 1.7, then K > lo-'. This 
agrees with our modelling assumptions about slip, since the larger G, is, the less mobile 
are the contact lines. Therefore, one would expect that less slip is required. 

However, if G, < 14, then /3x so condition (A 7) becomes 

0.2Bi 
K % -  

D2S2 * 

Now if DS = 1.7 and B, = 0.1 as before, then we require that K B Thus, we need 
larger slip near the contact lines. But in either case, whether G, is large or small, we 
can still satisfy 

max (e-7, Qi) < K c 0.01, (A 12) 

for a wide range of values of B, and keep K small enough that its effects are felt only 
near the contact lines. 

In  summary, we place the lower bound restriction (A 12) on the slip coefficient K 

in order that our expressions for pressure, curvature, contact angle, and interfacial 
shape are mathematically well-defined quantities, and we place the upper bound 
restriction in order that slip effects be confined to the contact-line region. Greenspan 
(1978) also recognizes that such restrictions are necessary when considering the 
spreading of a drop on a horizontal solid. However, he poses only condition (A 4) as 
the lower bound since he expands only contact angle and interfacial shape. Yet if 
one differentiates the expression (A 3) of his Appendix, terms of the form 

1 
h 
- tan-' (f) 

appear where his A is our (3144. Since his expression (A 3) is the derivative of the 
inferfacial shape, then its derivative is the curvature. Thus, the restriction (A 7) must 
also be applied to his problem in order that interfacial curvature be well-defined 
mathematically. We note that if K+O in (6.53), then hlZz will not only have 
logarithmic terms but also terms proportional to 

1 
1 - 2 2 '  

These lead to non-uniform expansions when 1 &2 = O(ki) .  If (6.53) is rewritten as 

[!dl -Z2l2 + K )  h1,zz = hlparticular, (A 15) 
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we see that K = 0 means that (A 15) is a singular differential equation at  the contact 
lines 2 = f 1. Thus slip is needed to relieve the singularity shown in (A 14). Slip serves 
the dual role of relieving a multi-valued velocity field at the contact line, and allowing 
for a bounded pressure field there. The latter role appears to be peculiar to problems 
where the fluid thickness approaches zero, as at the contact lines in our model and 
in the Greenspan (1978) model. Similarly, Silliman & Scriven (1978) find in their finite 
element analysis of a die swell a t  a channel exit, that the pressure decreases near the 
contact-line region as the slip coefficient increases. Hocking (1977) also finds that the 
pressure drop required to cause the flow of two immiscible fluids through a capillary, 
decreases as the slip coefficient increases. 
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